
AG VERNETZTE SYSTEME
FACHBEREICH INFORMATIK
TECHNISCHE UNIVERSITÄT

KAISERSLAUTERN

Diplomarbeit

Cluster Based Routing
in Mobile Ad Hoc Networks

Christoph Heidinger

2. Juni 2008

Ich erkläre hiermit, die vorliegende Diplomarbeit selbständig verfasst zu
haben. Die verwendeten Quellen und Hilfsmittel sind im Text kenntlich
gemacht und im Literaturverzeichnis vollständig aufgeführt.

Kaiserslautern, den 2. Juni 2008

(Christoph Heidinger)

Cluster Based Routing

in Mobile Ad Hoc Networks

Diplomarbeit

Arbeitsgruppe Vernetzte Systeme

Fachbereich Informatik

Technische Universität Kaiserslautern

Christoph Heidinger

Tag der Abgabe : 2. Juni 2008

Betreuer : Prof. Dr. Reinhard Gotzhein
Dipl. Inform. Alexander Geraldy

Contents

1 Introduction 1

1.1 Background . 1

1.2 Survey of Routing Schemes . 2

1.2.1 AODV . 3

1.2.2 AODVlight . 5

1.2.3 DSDV . 6

1.2.4 ZRP . 7

1.2.5 ARC . 8

1.3 ReBaC in Its First Version . 8

1.4 Changes in ReBaC2 . 9

1.4.1 Metrics . 10

1.4.2 Cluster Join Criteria 10

1.4.3 Alive Messages . 11

1.4.4 Routing . 11

2 Repair Based Clustering Algorithm 2 (ReBaC2) 12

2.1 Introduction . 12

2.1.1 Message Scenarios of ReBaC2 13

2.1.2 Interaction in Special Cases 18

2.2 SDL Design of ReBaC2 . 19

2.2.1 SDL Block Structure 19

2.2.2 Behaviour . 21

2.2.3 Process ControlServices 29

Contents ii

2.3 Metrics . 36

2.3.1 Data Structures . 36

2.3.2 Operators . 37

2.3.3 Examples . 37

2.4 Properties . 40

2.4.1 Partitioning . 40

2.4.2 Convergence . 40

3 Cluster Based Routing 42

3.1 Introduction . 42

3.2 Routing Framework . 43

3.3 Division of Activities . 46

3.4 Choice of Routing Mechanism 48

3.5 Coordination of ReBaC2 and AODVlight 49

3.5.1 Behaviour of AODVlight 49

3.5.2 Routing Query Processing by ReBaC2 52

3.6 Collaboration . 54

3.7 Conclusion . 57

4 Simulations 59

5 Conclusion and Outlook 67

5.1 Conclusion . 67

5.2 Outlook . 68

5.2.1 ReBaC2 . 68

5.2.2 Routing . 69

Chapter 1

Introduction

1.1 Background

This thesis presents the redesign and specification of a clustering algorithm
for mobile ad hoc networks. ReBaC2 is the improved version of the repair
based clustering algorithm presented in [Hei07]. Based on ReBaC2, a com-
posed routing scheme for mobile wireless ad hoc networks is also introduced.

A wireless network is a network of devices that communicate wirelessly with
each other, e. g. most commonly over radio data transmission. The devices
of the network are commonly called nodes. Such a network is termed mobile
if the nodes have the possibility to change their location, possibly even while
communicating with other nodes. An ad hoc network is a network without
constantly available infrastructure, i. e. the network consists only of the nodes
that are taking part, and no additional centrally controlling instances are
present.

When mobile nodes wish to form a wireless ad hoc network, specific problems
arise from the lack of infrastructure. A naive solution in this situation would
be to use a leader election scheme in order to establish a central point of
management. However, in networks with a large number of nodes, it is not
practical to concentrate information on the complete network in a single
node. Additional problems with this solution arise from the fact that the
nodes may be constantly mobile while participating in the network, resulting
in a highly dynamic network topology. Thus, the main problems in an ad
hoc network have to be solved in a distributed manner.

One of the main problems to be solved for mobile ad hoc networks is routing.
Routing is necessary in order to deliver data from one node of the network to
another node of the network when the two nodes are not within direct reach

1.2. Survey of Routing Schemes 2

of each other. Routing normally involves the determination of paths for
data packets to reach their destination from their source. There are several
different approaches to routing in mobile ad hoc networks, some of which are
presented in Section 1.2.

Routing in mobile ad hoc networks is generally difficult because in the be-
ginning, the nodes need to distributedly establish an (incomplete) view of
the network they are in, and after that they have to make routing decisions
based on that incomplete knowledge. Additionally, with the mobility of the
nodes, knowledge about network topology is reliable only for a short time.

Other challenges generally inherent to mobile wireless networks are the lim-
ited data transmission bandwidth and the limited energy availability at the
mobile nodes. Both limitations demand an economical use of information
transmission, especially concerning management messages.

In this work, several enhancements to ReBaC, the repair based clustering
algorithm as presented in [Hei07], are devised. The resulting second version of
the repair based clustering algorithm, ReBaC2, is used as a component in the
composition of a hierarchical routing scheme for mobile ad hoc networks. The
functionality of the composed routing scheme is demonstrated in simulations,
and some further improvements are outlined.

1.2 Survey of Routing Schemes

In this section, a small selection of routing protocols for mobile ad hoc net-
works is presented. When considering routing protocols, there are some
generic categories into which the routing protocols can be classified.

In proactive routing schemes, routing information, i. e. information on the
network structure, is gathered before it is needed. This means that the algo-
rithms start establishing the routing information in the nodes independently
of whether a route is needed. On the other hand, reactive routing schemes
start the route discovery only when a route is needed. This means that there
is no control traffic when no routes are needed, but the establishment of a
route starts only when it is actually needed for relaying a message. There is a
case for a hybrid routing scheme, i. e. a combination of both approaches. An
example is to use a proactive scheme within a certain region, and a reactive
scheme outside of that region. The advantage of this combination is that the
routes within the region are immediately available when needed, and there is
less control traffic outside that region when fewer routes are needed outside
the area.

1.2. Survey of Routing Schemes 3

Another differentiation of routing protocols is one between flat-routed and hi-
erarchical schemes. In a flat-routed routing scheme, all nodes are equal, even
after the construction of a routing structure. This means that every node
has the same tasks and responsibilities, usually defined within its surround-
ings. With a hierarchical routing scheme, a hierarchy of nodes is established.
This means that several of the nodes may be elected or otherwise chosen
to perform additional activities that other nodes may make use of. This is
usually done in order to reduce the network traffic by grouping several nodes
together into organisational units that are self managed or managed by a
specific node of the group.

1.2.1 AODV

The Ad-hoc On-Demand Distance Vector Routing scheme (AODV) as pre-
sented in [PR99] is a purely reactive routing scheme in that routes are only
established when needed, and route information is only kept at nodes as long
as required. When a route is needed and not known, the sender of the packet
starts the route discovery process with a RREQ (route request) message. This
message is flooded across the network until it reaches the destination pro-
vided by the original sender of the RREQ message. The intermediate nodes
keep the so-called reverse path information towards the sender of the route
request. This means that they record the node where the query originated,
and the node the message was received from as the next hop towards the
query’s origin. On receipt of the RREQ message at the destination, a RREP

(route reply) message is sent in reply along the recorded reverse path, estab-
lishing the forward path from source to destination. This is similar to the
reverse path establishment in that the RREP message’s origin and its last
hop are recorded as local next-hop routing information. After the process of
forward path establishment, a bidirectional path between source and desti-
nation has been set up. Note that the path is only present as single next hop
information at intermediate nodes and there is no need to store the complete
recorded path in the messages or in any node. Unused path information, such
as the additionally recorded reverse path information at nodes not between
source and destination, expires after some time.

In more detail, every node has two local counters, node sequence number and
broadcast ID. The broadcast ID is used to implement a flooding algorithm
for RREQ messages. The pair of node ID and broadcast ID is unique to every
RREQ message that is sent. This makes sure that every RREQ message is
only forwarded once by every node. A node that receives a new RREQ mes-
sage rebroadcasts it and keeps the pair of its source node ID and broadcast

1.2. Survey of Routing Schemes 4

ID. When the same RREQ message arrives again via a different path, it is
discarded and not rebroadcast.

The node sequence number of a node is used in routes towards that node as
a degree of freshness of the route. Whenever a source starts a new route dis-
covery, it includes its own node sequence number as well as the latest known
sequence number of the destination in the RREQ message to the source. This
makes sure that potential old route fragments are not considered valid for
the new search anymore. The RREQ message is flooded through the net-
work until it reaches either the destination itself or a node that has a route
towards the destination that has a destination sequence number for that des-
tination that is at least as high as the one in the RREQ message. At this
node, the RREP message is generated, and the actual destination sequence
number of the route that has been found is included in the RREP message.
If the RREP message has reached the destination itself, and the destination
sequence number of the request is higher than the current sequence number
at the destination, the destination node increments its sequence number to
the number received with the request. Based on the presence of destina-
tion sequence numbers in all routing entries, it is proved in [PR99] that the
formation of routing loops is impossible, even in the face of high mobility.

There are several different timeout mechanisms. The route request expiration
timeout determines the time for which the reverse path information is kept
at a node when no RREP message is encountered by the node. After this
time, it is reckoned that the RREP message has used another path or that
the destination has not been found, and the reverse path information for this
request is discarded.

The route caching timeout determines the time for which an inactive route
is preserved in the routing table. Whenever a packet is transmitted over the
route, the route caching timer for this route is reset. When the route has
been unused for the given amount of time, it is considered that the route is
not required anymore, and the routing information for this route is discarded.
As the value for the route caching timeout is equal for all nodes, the route
will be discarded at approximately the same time in all nodes that are part of
a single path using the route. Note that one route towards a destination may
be in use by several connections or other packet sequences between source
and destination, at a certain node. The timeout mechanism means that the
route is only discarded when it is not used by any packets anymore.

There is a timer called active timeout for each combination of direct neigh-
bour and path destination. It determines the time for which a neighbour is
considered active for a destination. The set of active nodes for a destina-
tion is used when the route to the destination breaks, and the information

1.2. Survey of Routing Schemes 5

on route breakage has to be relayed up towards the sources. On receiving
the information of a broken route, either by locally detecting route breakage
or by receiving a notification from nodes down the path, a node notifies all
active neighbours for this destination of the incident. A route table entry is
considered active if there is at least one active neighbour for its destination.

Route loss is detected with a combination of hello interval and the value
for allowed hello loss. If a node did not send any messages within the last
hello interval, it locally broadcasts a hello message in order to maintain the
local connectivity information at its direct neighbours. If allowed hello loss
hello messages have not been received from a neighbour, and no other mes-
sages have been received from that neighbour, it is considered lost. Another
possibility of detecting the loss of a neighboring node are link-layer acknowl-
edgements. This requires the data link layer to detect whether a frame that
is sent is actually received by its destination, and to offer this information to
the layer above. When a frame is sent without a link-level acknowledgement
being received, the destination of the respective message is considered lost.

If the lost neighbour is the next hop of an active routing table entry, the
respective route is considered broken and the active neighbours using the
route are notified. This is done with a special unsolicited RREP message
with infinite hop count. This notification message is relayed upwards until
it reaches the source. The source can reinitiate a route discovery with an
increased destination sequence number.

1.2.2 AODVlight

AODVlight is a simplification of AODV as described in Section 1.2.1. AOD-
Vlight has been designed to be an extremely light-weight routing protocol
for use in mobile ad hoc networks that exhibits the main characteristics of
AODV while at the same time being small in its specification size. It has
been used as one of the routing schemes being combined in [FGG07].

AODVlight is based on AODV, but lacks some of the features of AODV. For
example, in AODVlight, routes are only discovered unidirectionally. When
a RREQ message is locally broadcast, the RREP message that is returned is
sent back towards the source, but no routing information towards the source
node is added to the routing table. In case the route in the opposite direction
is also required, it needs to be established with a separate RREQ message.

Another limitation of AODVlight as compared to AODV is that there is no
route caching timer keeping track of the usage of a route entry, and there
is no route error detection in cases where the next hop of a route becomes

1.2. Survey of Routing Schemes 6

unavailable. Instead, there is a simple timeout mechanism that removes a
route at a fixed time after its establishment. When a route is not in use
anymore, nothing else is done. When the route is still required, it has to
be re-established with a new RREQ message. In case of a route error, the
route becomes unavailable due to the error until it is removed by the timeout
mechanism. After removal, it is re-established by the first packet the source
sends towards the destination.

1.2.3 DSDV

The Destination-Sequenced Distance-Vector routing as proposed in [PB94]
is a proactive, flat-routed, multi-hop distance vector routing scheme that is
proved to be loop-free at all times. The routing tables at every node contain
an entry for every node in the complete network, and the nodes regularly
broadcast their routing table to all direct neighbours. In order to facilitate a
quick dissemination of current information, the contents of the routing tables
are also broadcast when there has been significant change in the routing table.
The routing table entries consist of the next hop node, the number of hops
to the destination, and the destination sequence number.

Each node, when sending its routing table, in doing so announces its presence
in the network. In order to make sure that only the freshest routes are used,
the node’s destination sequence number is incremented each time it sends
its routing table. (The sequence numbers generated at the node itself are
always even.) When a routing table broadcast is received, the receiving node
adds or updates the route to the sender node, and also updates the routes
to other nodes known by the sender if they are better. A route is considered
better either if its sequence number is higher or if the sequence number is
equal and the number of hops is smaller.

The loss of a connection is either detected by the data link layer when the
connection is used, or it is inferred from the absence of regular routing table
broadcasts. If the link to a direct neighbour has been lost, all routes that
use this neighbour as next hop are assigned a hop count of infinity and
their sequence number is incremented by one. This means that a sequence
number generated at a node that is different from the actual destination
node will always be odd, and thus the next sequence number generated by
the destination itself will always be greater than the one generated at the
node where the breakage of the route was detected.

There are some problems that are also mentioned in [PB94]. The first prob-
lem is that the regularly broadcast routing tables gain considerable size and

1.2. Survey of Routing Schemes 7

thus cause a significant network load in a network with a high total num-
ber of nodes. The suggested solution is that the nodes do not send their
complete routing table every time, but that incremental routing table up-
date messages are used that only contain the routing table entries that have
changed in comparison to the previously announced state. Of course, due
to the mobility of the nodes, full routing table messages have to be sent
regularly, after longer intervals of time, so that nodes coming into the neigh-
bourhood of another node have the possibility to eventually receive the full
routing table information.

The second problem that is addressed in [PB94] is that it may be the case
that a node regularly receives newer, but worse, routing information to a
certain destination earlier than information on a better route that is also
continuously present. If not addressed, this effect may lead to the affected
node regularly broadcasting routing table changes, thus introducing fluc-
tuation into the complete network even if there is no node mobility. The
suggested solution proposes a delay in the propagation of the newer routing
information if better information can be expected after a short while. The
implementation of this additional feature introduces a second routing table
in order to separate the routes that are broadcast to the neighbours from the
ones actually in use by the node that will only later be transferred to the
table that is broadcast.

1.2.4 ZRP

The Zone Routing Protocol as described in [Haa97] is an example of a hy-
brid routing scheme that combines proactive and reactive functionality. It
constructs a flat-routed network structure.

The zone of each node is defined to consist of all nodes of the network that
lie within a radius of r

zone
hops from the node. Thus, the zones are heavily

overlapping. Within a zone, a standard proactive routing scheme can be used
to establish the routes, and thus a node knows all other nodes that lie within
its cluster.

Between the zones, a reactive routing scheme is devised. Each node queries
the outermost nodes of its zone, which in turn will query their outermost
nodes, until the destination has been found. This is equivalent to flooding,
except that only the outermost nodes of each zone take part in the process.
This results in a lower number of nodes being involved in the information
dissemination process, and far fewer messages being sent, because the mes-
sages are delivered directly, i. e. as unicast messages, towards the outermost

1.3. ReBaC in Its First Version 8

nodes of the zone. The routing paths resulting from this technique consist
of a sequence of nodes each at the outer edge of the last node’s zone, thus
approximately r

zone
away from each other. This information is sufficient

because each node knows the paths to all nodes within its zone.

1.2.5 ARC

An Adaptive Routing using Clusters has been proposed in [BR02]. It features
a cluster structure that is constructed in order to make routing more efficient.

The clusters are possibly overlapping groups of nodes, and each cluster has
exactly one leader. All members of a cluster are direct neighbours of the
leader, and all direct neighbours of a leader are a member of the cluster,
hence the clusters may be overlapping. A node becomes a leader when it is
not a member of any cluster. A leader can only lose its leader status when
its cluster is a subset of another cluster, in which case the smaller cluster
is abandoned in favour of the larger one. For routing, a set of gateways is
established for each pair of adjacent clusters. This implies that there may be
several links between two clusters.

The routes are discovered by a so-called limited broadcast. This means that
the route discovery messages are not broadcast in the complete network,
but only cluster leaders and gateways broadcast these messages. The use of
AODV on the cluster members is proposed for the route discovery phase. The
established routes between nodes are then recorded as a sequence of cluster
leaders. This sequence contains sufficient information for routing the packets
because each cluster leader has the knowledge of the current gateways to its
adjacent cluster leaders.

1.3 ReBaC in Its First Version

The basic concept of Repair Based Clustering has already been introduced in
[Hei07]. It presents a clustering algorithm for mobile ad hoc networks that is
entirely based on cluster repair rules. This means that the nodes start with
a simple starting state, and from there on, the cluster formation is built by
the same rules that are later used to repair the clustering structure in the
face of node mobility and other topology changes. The clusters constructed
by the algorithm are non-overlapping.

The construction of the clustering structure is based on the cluster join func-
tionality. When a node decides that its current situation is not acceptable

1.4. Changes in ReBaC2 9

anymore, i. e. because it has lost connection to its cluster or it is a cluster
head without any members, it tries to join one of the clusters that it has
connection to. This information is concurrently gathered while the node is
in action, and in the event of an intended cluster join, the node chooses
one of the known neighbouring nodes to explicitly request membership in its
cluster. The membership request may be accepted or rejected, in which case
the node will try another of the known neighbouring nodes to request mem-
bership in its cluster. If no membership can be acquired, the node declares
itself a cluster head in the same way as after being switched on.

The only metric that is used to limit cluster size is the number of hops
towards the cluster head. A maximum number of hops is defined, and cluster
membership requests are only accepted if the resulting maximum number of
hops within the tree does not exceed the maximum value. On the other hand,
the existence of a small cluster only terminates when there are no members
in it, i. e. the cluster head is the only node in the cluster. Thus, in the worst
case, there may be a large number of clusters consisting of exactly two nodes,
namely the cluster head and one member.

The general approach of this scheme eliminates some of the difficulties that
other clustering and routing schemes for wireless ad hoc networks have. First,
if there is a different set of rules for constructing the clusters and for main-
taining them later, it is more difficult to ensure that the clusters always have
the properties that are intended by the clustering algorithm. Secondly, with
many existing algorithms, it is assumed that there are no topology changes
during the initial construction of the clustering structure. Both problems
are solved with the repair based approach of ReBaC. The same set of rules
is used for initial construction and later maintenance, and topology changes
during construction are met with the same reactions as during the mainte-
nance phase.

In [Hei07], simulations have been conducted showing that ReBaC is func-
tional, but that it should be adapted to the needs of specific networks by
means of changing the metrics it uses for cluster formation.

1.4 Changes in ReBaC2

The new version of the repair based clustering algorithm contains some
changes that have been proposed after the evaluation of the first version
of ReBaC. For example, exchangeable metrics are a key requirement to the
second version. For different application and environment scenarios, differ-
ent metrics are suitable to control the clustering structure. Thus, the new

1.4. Changes in ReBaC2 10

version should provide the possibility to freely specify the clustering metrics
independently of the algorithm behaviour. Coming along with this change,
the locality of the evaluation of a cluster needs to be changed. Judging the
quality of the cluster at a node that is not currently a member of the cluster,
as it is in the first version, does not allow enough information to be taken
into account when making decisions on further actions. This is especially
true as the metrics to be used for this judgement are freely definable.

Another change since ReBaC is that a regular clustering message has been
introduced in order to make the amount of messages sent by the clustering
algorithm more manageable. Furthermore, the extended use of the clustering
algorithm in a hybrid routing algorithm has been prepared. The first version
of ReBaC was only a clustering scheme for the sake of demonstrating its fea-
sibility, the second version enhances the demonstration to actually approach
routing in mobile ad hoc networks.

1.4.1 Metrics

In the new version of ReBaC, the cluster formation is based on metrics that
can be defined separately from the algorithm specification. This means that
the criteria that are used to form the clustering structure are exchangeable
and can be adapted depending on the needs of the application and the net-
work situation.

The values of the defined metrics are distributedly computed by the algo-
rithm. Decisions concerning the clustering structure are then based on these
values. This is achieved by extracting the decision behaviour into a separate
operator that is then defined externally with the metrics. Thus, certain con-
ditions to the clustering structure can be specified in terms of the metrics,
and these conditions can be enforced by the algorithm.

1.4.2 Cluster Join Criteria

The way the criteria are evaluated has also been changed with regards to the
location of the decision. In the former version, the joining node evaluates the
criterion. This criterion only consists of the number of hops to the anticipated
head. In the new version, the joining node sends a jcq message as a local
broadcast, thus applying for cluster membership to all neighbouring nodes.
The nodes receiving the jcq message use the defined metrics to determine a
value of preference for the proposed join operation from their own status.
Depending on this value of preference, they may send a jca message to the

1.4. Changes in ReBaC2 11

applying node. The applying node chooses one of the neighbours who sent a
jca message.

The change in design most importantly means that the locality of the de-
cision over a join operation has been moved from the joining node to the
cluster member that is being queried. This allows for more information to be
taken into account when deciding whether a join operation should take place.
Now, all information that is present in the cluster can be used, including the
externally defined metrics applied to the clustering structure.

1.4.3 Alive Messages

The meaning of the regularly sent alive messages has been slightly changed
for the second version of ReBaC. In ReBaC2, an alive message is a con-
tainer message that may contain other clustering messages. This concept
has been introduced in order to facilitate communication with several dif-
ferent messages between ReBaC2 on different nodes, while at the same time
only sending periodic messages over the medium.

When a node needs to send a clustering message, the message is queued until
the next alive message is sent, and is then included in the alive message. This
makes it possible to use various different clustering message types, while the
queueing of these messages ensures that the broadcast medium will not be
used too often because the different messages are transmitted together.

1.4.4 Routing

Having established a clustering structure, the next step is to devise a routing
scheme benefitting from the hierarchical structure provided by clustering for
efficient and, most importantly, scalable routing. To this end, the new clus-
tering algorithm has been integrated into the routing framework presented in
[FGG07]. The framework allows for a composition of different routing mech-
anisms and is used to combine ReBaC2 with the reactive routing scheme
AODVlight to form a new cluster-based hierarchical routing scheme.

Chapter 2

Repair Based Clustering
Algorithm 2 (ReBaC2)

2.1 Introduction

ReBaC2 is a distributed repair based clustering algorithm for mobile ad hoc
networks. It consists only of rules repairing an existing clustering structure,
and it is started by a simple rule making every node its own cluster head.

The main feature of ReBaC as compared to other clustering schemes is that
it is completely repair based, i. e. the cluster formation process consists of
cluster maintenance activities, even for the initial construction phase. This
has the advantage that only one clustering algorithm needs to be provided,
and that it produces similar results for initial construction and repair after
topology change.

The additional main feature of the second version, ReBaC2, is the fully
exchangeable metrics. The criteria that are used to assess the quality of
the clustering structure and of join operations can be defined in a separate
package.

The clusters form a (non-overlapping) partitioning of the network. Each
cluster is organised in a tree structure, where the cluster head is the root of
the tree, and cluster members are tree nodes or leaves in the tree. In the
following, the terms parent and child will be used to indicate the relation of
the network nodes with respect to this tree strucure.

Each node regularly sends alive messages. These messages are not primarily
used for keeping alive existing cluster structures, but also for periodic ex-
change of current information. The alive messages are container messages for

2.1. Introduction 13

all other clustering messages. They contain the node’s current cluster ID and
additional messages with information based on the current state of the node
and the cluster. For example, a node that is currently a member of a cluster
sends up and down messages in its alive message. The up messages contain
the information that was aggregated in a member’s subtree, and the down

messages carry the information that is propagated from the cluster head to
all members.

When a node changes its cluster membership, a handshake of jcq (join cluster
request), jca (join cluster accept), and jcc (join cluster confirm) messages is
included in the alive messages of the affected nodes. When no membership
changes are occurring, every node sends one alive message with up and down

messages per defined time interval, thus making the total number of messages
sent linearly dependent on time. Only when cluster membership is changed
do nodes send additional alive messages to request and confirm cluster joining
activities.

2.1.1 Message Scenarios of ReBaC2

The following subsections show the most important communication situa-
tions using message sequence charts (MSCs). To improve the readability of
the MSCs, the names of the relevant messages included in the alive messages
are given rather than the alive messages themselves. The messages that are
sent within a coregion are included in a common alive message that is locally
broadcast over the wireless medium. Thus, these messages are actually sent
in a single send operation, but received at several nodes.

For better understanding, the network topology used in each of the exam-
ples is depicted in additional diagrams. In these topology diagrams, cluster
heads are coloured blue and cluster members are coloured light green or light
orange. The groups of nodes encircled by a red line belong to the same
cluster.

2.1.1.1 Information Dissemination

The nodes belonging to the same cluster regularly exchange information in
up and down messages. The up messages are used to transmit information
from the member nodes to their parent nodes and eventually to the cluster
head, and the down messages are used to disseminate central information
from the cluster head to all members of the cluster.

2.1. Introduction 14

Member

node11

Member

node1

Head

ch

Member

node2

Member

node21

Member

node22

down
down

down
up

down

down up
up

up
up

msc dissemination

Figure 2.1: Information dissemination

ch111
2

21

22

Figure 2.2: Network topology for information dissemination MSC

2.1. Introduction 15

The message sequence chart in Fig. 2.1 shows some nodes of the same cluster
and their regular exchange of information. The network topology for this
example is depicted in Fig. 2.2.

The sending of an alive message is triggered at a node as soon as a down mes-
sage can be sent. The cluster head sends alive messages with down messages
regularly. A node that is a member of a cluster immediately forwards a down
message it receives. Thus, the regular alive messages in the complete cluster
are triggered by the cluster head. This effect is used to make sure that the
information from the cluster head is spread across the whole cluster within
a short time. It is not intended to be a time synchronisation of the nodes in
the cluster.

When the sending of an alive message is triggered, all other pending messages
are included in the alive message and sent. By retaining the non-urgent
messages and incorporating them into the next triggered alive message, a
more efficient use of the broadcast medium is attempted, as there are fewer
messages in total that need to be sent over the wireless medium. This is true
even if the resulting message has to be fragmented into several frames on
the medium, because the frames of the transmission can be more optimally
utilised if one large message is sent. As the alive messages are received by all
direct neighbours, each neighbour can use the messages intended for it and
discard the other messages included in the alive message. The up messages
are typically such pending messages that are sent together with the down

messages when the sending of a message is triggered.

2.1.1.2 Cluster Join

The MSC in Fig. 2.3 shows the message sequence in case a node joins a
cluster. The joining node is called node0 in the diagram. The network
topology is shown in Fig. 2.4.

The first action of a node that has decided to join another cluster is to
broadcast a jcq (join cluster request) message. This message is processed by
all direct neighbours of the node. Each of the recipients of the jcq message
computes a value of preference for the join operation and, if the value is good
enough, offers cluster membership to the new node by sending a jca (join
cluster accept) message. The new node uses a timer to wait for incoming jca

messages for jcaTime, and after that time, it chooses the jca message with
the best preference value, and sends a jcc (join cluster confirm) message in
reply to its sender. This message also includes information on the subtree
that the joining node may already have. If this is the case, the node joins the
new cluster with its subtree. The accepting node (node12 in the diagram)

2.1. Introduction 16

Member

node31

Member

node21

New Node

node0

Member

node12

Member

node13

Head

ch1

jcq
jcq

jcq

jcaTime

jca
jca

choose
jcc

jccFwd
jccFwd

msc clusterjoin

Figure 2.3: Cluster join

31

0

21

12 13 ch1

Figure 2.4: Network topology for cluster join MSC

2.1. Introduction 17

Head

ch

Member

node1

Member

node11

Member

node111

childLossTimeout
up

childLossTimeout
up

childLossTimeout

lost
lost

msc childloss

Figure 2.5: Child loss

forwards the information of the newly joined node towards the cluster head
in a jccFwd (forwarded jcc) message. For forwarding the information towards
the cluster head, jccFwd messages are used instead of jcc messages because
they contain additional fields for the current sender and receiver of the link
the message is forwarded over.

ch 1 11 111

Figure 2.6: Network topology for child loss MSC

2.1. Introduction 18

2.1.1.3 Child Loss

The MSC in Fig. 2.5 shows how the loss of a child is detected and the reaction
to it. The topology can be seen in Fig. 2.6. The continuous red line encircles
the cluster as it is before the child loss occurs, and the dashed line shows the
change in cluster membership after child loss.

In normal situations, when topology is stable, the periodic up messages in-
cluded in the alive messages are used to confirm the existence of a child.
Thus, as soon as an up message is received from a child, a child loss timer
is restarted for that child. The timer duration is set high enough so that up
to two missing up messages are tolerated without a formal child loss detec-
tion. When the timer times out, it is assumed that the child has been lost,
and that it is not a member of the cluster anymore. In case the lost child
has children, they are also considered lost, because they are not reachable
anymore if their parent node has gone. After the timeout, a lost message is
generated and sent towards the parent node of the node that detected the
loss. The message is forwarded towards the cluster head. All nodes on the
way purge the lost node and all its direct and indirect children from their
internal representations of the subtree structure. When this process is com-
pleted, the lost node has been completely removed from all data structures
of the cluster. The lost child node also discovers the link loss with a timeout
and tries to join a cluster in its vicinity.

2.1.2 Interaction in Special Cases

When a node’s direct or indirect parent decides to change its cluster member-
ship (and that of its children), its children have to be notified of the change
in cluster membership. The parent sends its new cluster ID with its down

messages, and its children adopt the new cluster ID when receiving a down

message from their direct parent. In the same way, the children’s children
are notified of the changed cluster ID.

When a child seems lost for a while, but later reappears, its subtree infor-
mation has already been purged from all intermediate nodes (see MSC in
Fig. 2.5). If the child itself still considers itself a member of the cluster, for
example because it is still within reach of its parent, it will be reaccepted
into its previous cluster as soon as a message from the child is received at the
parent. To regain the already purged subtree information from the rediscov-
ered child, the parent resends a jca message towards the child as soon as it
rediscovers a previously lost child node. The child node resends a jcc message
with its current subtree structure on receipt of a duplicated jca message, in

2.2. SDL Design of ReBaC2 19

the same way as if it had just joined the cluster as shown in Fig. 2.3. The
jcc message is forwarded towards the cluster head by the parent, just as a jcc

message from an initial join action is forwarded, so that all affected nodes
gain knowledge of the child’s subtree structure.

2.2 SDL Design of ReBaC2

ReBaC2 has been specified in the Specification and Description Language
SDL-92, which will be called SDL in the following sections. The specification
has been done with the tool Telelogic Tau [tau].

2.2.1 SDL Block Structure

The SDL block type ReBaC2 (see Fig. 2.7) contains the clustering function-
ality provided by ReBaC2. On its borders, it uses the interfaces provided
by the framework discussed in Section 3.2. The interface RInf is used to
exchange information with other nodes on the network, and the interface
MGMNT is later used for querying ReBaC2 about routing information.

The SDL block ReBaC2Adapter contains coder and decoder functionality
that is extended by the ability to incorporate information obtained by mea-
surements taken when a frame is received on the wireless MAC layer, e.g.
transmission quality, into the signal localAlive. It decodes incoming RecvData

signals into alive messages that contain the specific clustering messages. The
alive messages are delivered to AliveReceiver. The coder part of the func-
tionality lies in encoding the alive messages coming in from AliveSender into
SendData signals that are then delivered to the underlying transport mecha-
nism for being sent via the wireless medium. The additional measurements
that are included into the decoded localAlive signals are obtained from the
wireless interface when the corresponding data frame is received. Currently,
these measurements consist only of a value for the transmission strength of
the frame at the receiver side. It is used to assess the quality of the wireless
link. This value is included with the decoded alive message into the localAlive

signal that is sent to AliveReceiver.

The block AliveSender sends alive messages regularly. It collects all mes-
sages that are received from block Control and includes them in the next alive

message. The block AliveReceiver decomposes the incoming alive messages
and sends the messages contained in them to block Control individually.

2.2. SDL Design of ReBaC2 20

block type ReBaC2 6(6)

ReBaC2Management

Control

AliveSender AliveReceiver

ReBaC2Adapter

MGMNT
RouteResp

RouteReq

mgm
RouteResp

RouteReq

mgmQ
(mgmQueries)

(mgmReplies)

sendData

(toAlive), setCluster

recvData

(fromAlive), aliveStat

ackCh

(ack)

outSend

alive

outRecv

localAlive

outCh
Register, SendData

RecvData

RInf
Register, SendData

RecvData

Figure 2.7: Block type ReBaC2

2.2. SDL Design of ReBaC2 21

The block ReBaC2Management is responsible for answering route requests
from outside of ReBaC2. Each incoming route request is broken down into re-
quests for single nodes which are sent to service type Route in block Control.
The resulting route response is formed from the answers from block Control.

The block Control consists of exactly one SDL process, ControlServices,
which in turn consists of the five SDL services explained in Section 2.2.2.
In the interaction of these services, and in their communication with their
environment outside the process lies the clustering functionality.

2.2.2 Behaviour

The main process, ControlServices, consists of the following services:

• Cluster. Cluster membership establishment and management

• Evaluate. Evaluation of incoming cluster join requests

• Aggregate. Aggregation of subtree information for collected relay to
parent node

• Observe. Observation of local properties and of the node’s neighbour-
hood, including processing of the parent’s down messages

• Route. Response to routing requests using locally available cluster
structure information

The following sections detail the interaction of the processes and services
within a node for some of the more common communication scenarios.

2.2.2.1 A Cluster Is Joined

The message sequence chart in Fig. 2.8 shows the local communication within
a node when another node joins the cluster via this node. In the beginning,
a localAlive message containing a jcq message is received. The local variants
of some messages have been introduced for local communication within the
node because they contain additional reception information for these mes-
sages, such as for example transmission strength. Thus, the jcq message is
delivered internally as a localJcq signal. Upon receiving a localJcq signal,
service Evaluate computes a preference value for the proposed join opera-
tion. As the jcq message also contains aggregated information on the joining
node’s subtree, this information can be taken into account when computing

2.2. SDL Design of ReBaC2 22

AliveReceiver AliveSender Evaluate

eval

Cluster

clu

Aggregate

agg

localAlive
localJcq

compute preference

jca

include jca in set

down

alive

localAlive
jcc

add subtree

newChild
jccFwd

generate ack request

down

alive

msc join

Figure 2.8: Evaluation of incoming jcq at a member node and another node
joining this cluster

2.2. SDL Design of ReBaC2 23

the preference value. For example, if a subtree with two hops depth is try-
ing to join, but the maximum number of hops allows only one hop to be
added, the join operation may be rejected. To reject a join operation, the
node simply does not answer the jcq message. Thus, service Evaluate only
replies to the localJcq signal if the value of preference is good enough. The
answer consists of a jca message that is collected by process AliveSender.
It is not directly sent, but only as soon as another outgoing message triggers
the sending of an alive message. Thus, in the MSC, a down message of irrel-
evant origin is included to show that the sending of the alive message to the
medium is triggered.

After receiving the alive message, the other node decides which cluster to join.
In this case, the other node chooses this node as its future parent, so a lo-

calAlive signal containing a jcc message is received. The jcc message contains
the subtree structure information from the joining node, so this information
can now be added to the locally available subtree structure information by
service Cluster. Additionally, service Cluster sends a newChild signal to
service Aggregate. This is necessary to inform service Aggregate of the
new child this node has, because it is part of the responsibility of service
Aggregate to keep track of all direct children of this node and to detect the
loss of a direct child. After sending the newChild signal, service Cluster

sends a jccFwd message that is intended for the parent node of this node.
This message includes the new child’s subtree structure information so that
all parents of this node, and eventually the cluster head, can add this infor-
mation to their local representations of their subtree.

As it is important for the jccFwd message to be received by the parent node,
this message type has been designed to be a dependable message. This means
that additionally to the message itself that is added to the set of messages
to be sent with the next alive message, a seqNo message is included in the
set. The seqNo message has the function of an acknowledgement request.
It contains a sequence number unique to this node, and when it is received
by the intended recipient node, an ack message is sent back in reply. This
functionality is explained in more detail in Section 2.2.2.4.

Again, the alive message is not sent until some other message triggers it, and
then the information is sent out to the node’s parent.

2.2.2.2 Cluster Merge

Fig. 2.9 shows an example situation of two clusters merging. The solid red
lines show the cluster structure before the merge operation. Node n221 has
been lost by cluster 2 (the small cluster to the right). The cluster head

2.2. SDL Design of ReBaC2 24

ch1

n11

n12
n121

gw1 ch2

n21

n22
n221

Figure 2.9: Example topology for cluster merge scenario

of cluster 2, ch2, recognises that its cluster is too small, i. e. not meeting
the given criteria, and consequently joins the neighbouring cluster 1, thus
merging its cluster with cluster 1 and abandoning its cluster head status.
The resulting cluster structure is shown by the red dashed line.

The message sequence chart in Fig. 2.10 shows the internal signals in the
cluster head in the situation when it is informed about the loss of a node
that makes the cluster too small. The scenario starts with an alive message
that contains a lost message, i. e. it informs the cluster head that it has lost
a node (and its subtree). The alive message also includes a seqNo message
requesting an acknowledgement of its reception. In reaction to the seqNo

message, process AliveReceiver sends an ackSend signal directly to process
AliveSender which sends the acknowledgement message with the next alive

message. The lost message is delivered to service Cluster, which truncates
the lost node’s subtree from the local cluster representation. After doing so,
it uses the operator clusterTooSmall to determine whether the existence
of the reduced cluster still conforms to the criteria laid out in the metrics
definitions. In this case, the cluster is determined to be too small, and the
timer noChildrenTimeout is used to wait for a while for other nodes to join
this cluster, until the cluster is finally merged with another cluster. In this
case, no other nodes join the cluster during that time, and after that time,
the cluster head starts joining another cluster, which means that it is taking
its members with it into the new cluster. The further actions taken by the
head in order to join another cluster are described in Section 2.2.2.4.

2.2.2.3 Parent Loss

In Fig. 2.11, it is shown how a member node detects the loss of connec-
tion to its parent and how it reacts. The normal situation, i. e. the situ-

2.2. SDL Design of ReBaC2 25

AliveReceiver AliveSender Cluster

clu

localAlive

ackSend

include ack in set

lost

truncate subtree

clusterTooSmall

noChildrenTimeout

startJoin

msc merge

Figure 2.10: Cluster head deciding to merge its cluster with another cluster

2.2. SDL Design of ReBaC2 26

AliveReceiver Observe

obs

Cluster

clu

parentLossTimeout
localAlive

down

parentLossTimeout

parentLoss

startJoin

msc parentloss

Figure 2.11: Parent loss at a member node

2.2. SDL Design of ReBaC2 27

ation where the connection to the parent is stable, is shown in the begin-
ning. The down message from the parent node is received before the timer
parentLossTimeout times out. When the down message is received, the
timer is stopped and restarted. In case the timer times out, the connection
to the parent is assumed to have been lost, and service Observe sends a
parentLoss signal to service Cluster to inform it of the parent loss. In ser-
vice Cluster, the functionality for joining another node with the complete
subtree is started. This behaviour is explained in Section 2.2.2.4.

2.2.2.4 Joining Another Cluster

The activities performed by a node that has decided to join another cluster
are shown in the MSC in Fig. 2.12. The first action taken by service Cluster
is to inform process AliveSender of the fact that this node currently belongs
to no cluster. This is necessary because process AliveSender sends the
current cluster membership information of this node with all alive messages.
As the messages used to obtain a new cluster membership are also included
in alive messages, it is important that these alive messages do not contain the
previous cluster membership anymore. After that, service Cluster sends
the jcq message that is broadcast to all neighbouring nodes, and uses the
timer jcaTime to determine the time that the other nodes have to send in
their replies. The jcq message immediately triggers the sending of the alive

message at process AliveSender, so the message is immediately sent to the
other nodes.

The incoming jca messages are collected at service Cluster until jcaTime
is over. Then, the jca message with the best preference value is chosen,
making its sender the future parent of this node. The future parent node is
informed of this node’s choice with the jcc message that is explicitly addressed
to it. The jcc message contains the information on this node and on its
subtree. As it is vital for the consistency of the nodes’ views of the clustering
structure that the jcc message is not lost on the way to the new parent, an
acknowledgement request is added for this message at process AliveSender.
The jcc message triggers the immediate sending of the alive message so that
the information on the new members of the cluster is not deferred.

This MSC also shows how the dependable message delivery is organised. In
case a dependable message is not acknowledged until the next alive message
is sent, process AliveSender sends it again with the next alive message, of
course also including the seqNo message requesting the acknowledgement of
the message. This is repeated with every alive message until the acknowl-
edgement from the intended recipient of the message is received. When

2.2. SDL Design of ReBaC2 28

AliveReceiver AliveSender Cluster

clu

startJoin

setCluster(ADDR_INVALID)

jcq
alive

jcaTime

localAlive
jca

localAlive
jca

choose best pref

jcc

add ack request

alive

down

resend jcc, ack req

alive

localAlive
ackRecv

remove jcc and ack

msc startjoin

Figure 2.12: This node joining a cluster, with repeated sending of dependable
jcc message

2.2. SDL Design of ReBaC2 29

the acknowledgement is received, process AliveReceiver sends an ackRecv

signal directly to process AliveSender, notifying it that the message has
been acknowledged and that it does not need to be sent anymore. Process
AliveSender thus removes the message and its seqNo message from the list
of unacknowledged dependable messages.

2.2.3 Process ControlServices

In the following five subsections, the services of process ControlServices

are described in detail. For an overview of their interaction channels, see
Fig. 2.13. The last subsection details the mechanism for dependable delivery
of some types of clustering messages.

2.2.3.1 Service Type Evaluate

This service evaluates incoming jcq messages that are received from a neigh-
bouring node wishing to join a cluster. The jcq message is evaluated by all
receiving nodes, and if the quality of the cluster resulting from the supposed
join action is good enough, the neighbour sends a jca message including the
value of preference of the cluster join action. The jcq messages are received
by the service as localJcq signals because that signal carries additional in-
formation on transmission quality of the message. When a jcq message is
received at the service, the function evaluate from the package Metrics is
used to determine the preference value for the requesting node. If the prefer-
ence value is better than a threshold also defined in package Metrics, a jca

message is sent in reply to the requesting node.

2.2.3.2 Service Type Observe

The functionality of Observe is split up among three service definitions. The
service type Observe inherits service type ObserveNeighbourhood, which
inherits service type ObserveLocally.

ObserveLocally is used for the information that is observed locally within
the node without regard to other nodes. Examples include an assessment
of battery power and expected remaining operating time. Currently, it also
includes the tracking of the number of child losses within the last period of
time. This is considered local information because this service is notified
locally by service type Aggregate about single incidents of child loss. The
information that is acquired is stored in the local variable localMetric that

2.2. SDL Design of ReBaC2 30

process ControlServices 3(3)

obs:Observe

clu:Cluster

rou:Route

agg:Aggregate

eval:Evaluate

mgmQu

down

c11aliveStat
alive

c13

setCluster

als

c6
parentLoss

setParent

mem

metrics

c12

setCluster
als down

c9

jccFwd,
lost

jcc,
jccFwd,
lost

jcc

down

c7

jcq, jcc

jca

proc

c3

down

down

proc

mgmQue

(mgmReplies)

(mgmQueries)

mgm

c4

childLossStat
obs agg

c1

up, down,
jca

localUp

proc

c5

childLoss

newChild, resetAggregate

mem

c8

jca

localJcq

proc

Figure 2.13: Service interaction page of process ControlServices

2.2. SDL Design of ReBaC2 31

is defined in process ControlServices and is thus visible by all services of
the process. This visibility is used for information exchange between the
services of the process.

ObserveNeighbourhood receives an aliveStat signal from AliveReceiver for
every alive message that has been received by this node. As alive messages
are only received from direct neighbours of this node, the service monitors
the direct neighbourhood of the node. It may be used to compute values
such as the number of direct neighbours that belong to the same cluster, or
the change of transmission quality of each node as compared to the previ-
ously received frames. The functionality is also used to monitor the direct
neighbours of the node that are not members of this node’s cluster. All such
nodes are considered as potential gateways to their cluster, and this node is
then also a gateway node for this cluster. The information on neighbouring
gateway nodes is also saved in the variable localMetric. Additionally, the
service contains a timeout mechanism that removes gateways from the set of
gateways in localMetric when their alive messages have not been received
for too long a while.

Observe inherits the two other observe services, and offers additional func-
tions such as forwarding of down messages and recognition of parent loss.
Incoming down messages are only forwarded when this node is a member of
a cluster, i. e. it is not a cluster head. The down messages originate from
the cluster head and contain cluster-wide information that is released by the
cluster head and then propagated through the tree structure by all cluster
members. Thus, every member node forwards down messages it receives from
its parent to its children. At the same time, service type Observe detects
parent losses, i. e. the absence of several consecutive down messages from the
direct parent. When there has not been a down message from the node’s
parent node for a while, the parent node is considered lost, and service type
Observe sends a parentLoss signal to service type Cluster which takes ap-
propriate actions.

There is another additional function of Observe which is needed when a
(direct or indirect) parent of this node changes cluster membership. When
the node’s parent changes its cluster membership, it includes the new cluster
ID in its down messages (see Section 2.1.2). Such a change of cluster ID is
detected at Observe, and a setCluster signal is sent to AliveSender, notifying
it of the changed cluster membership for further propagation to this node’s
children. The information on the new cluster ID is also stored in the local
variable clusterId for the other services in the process.

2.2. SDL Design of ReBaC2 32

2.2.3.3 Service Type Aggregate

Aggregate aggregates incoming up messages from the children of this node.
The up messages contain information on the subtree of the sending node. In
service type Aggregate, these up messages are collected and, after a specified
interval of time, they are aggregated into one up message to be sent towards
this node’s parent. The actual aggregation of the metrics is performed by
using the operator aggregate specified in package Metrics. This aggregation
process also takes into account the information from the local reception of the
up messages being aggregated, e. g. transmission quality, which is included in
addition to the actual message content in localUp signals. The service also
keeps track of the current set of children. It is informed by Cluster about
new (direct) children with a newChild signal and uses a separate timer for
each child to determine whether the connection to the child can be considered
lost. In case a child is considered lost, a childLoss signal is sent to Cluster.

In the special case where this node is a cluster head, the incoming up messages
are aggregated but the aggregated information is not sent as an up message,
but it is converted into a down message to be propagated among all members
of the cluster. A down message contains nearly the same information as an
up message, but some information may be left out. For example, the cluster
head receives the full list of all gateway nodes in the cluster in its up messages,
but this knowledge is not required at all member nodes, so this information
is not included in the down messages.

Another special case is the following. When an up message is received from a
node that is not currently known to be a child of this node, but it considers
itself a child of this node, (which can be seen from its cluster ID and its
parent ID) then Aggregate sends an additional jca message to this specific
child. On receipt of this additional jca message, the child node resends a
jcc message with the complete subtree information, effectively rejoining the
cluster via this node. The incoming jcc message is processed by Cluster.

2.2.3.4 Service Type Cluster

Cluster is the service with the central cluster membership and cluster head
functionality. The service declares the node a cluster head when started.

As a cluster head, a node receives the jccFwd and lost messages from its
members and builds an internal representation of the cluster’s tree structure.
The cluster head monitors the current quality of the cluster, and if the quality
continues to be too poor for a certain amount of time, it takes actions to
improve the quality of the clustering structure. As an example, when the

2.2. SDL Design of ReBaC2 33

total number of nodes in the cluster is too low, the cluster head tries to join
another cluster, taking the old cluster members into the new cluster as its
subtree. Another example of the node starting to join another cluster is when
this node is a cluster member, but has lost the link towards the parent node
and thus towards the cluster.

The action of joining another cluster is started by locally broadcasting a
jcq message. If there are neighbours willing to take this node as a child,
they will send a jca message with a preference value to this node. The
incoming jca messages are collected by Cluster until jcaTime is over, and
the sender of the jca message with the best preference value is chosen as
the new parent. A jcc message is sent to the new parent which includes
the current subtree structure, so all members are taken into the new cluster
with this node. This is a relatively large message, but it is only sent once
when this node joins another cluster. Consecutively, only current metrics
information is propagated towards the parent node in up messages. If no jca

messages have been received after the sending of the jcq message, the node
has to stay or become a cluster head for its subtree structure. Note that the
node’s subtree structure may be empty, resulting in the node being alone in
its cluster.

When this node receives a jcc message from a node that has earlier on re-
ceived a jca message from this node’s service type Evaluate, i. e. has been
accepted for joining, it merges the membership structure information from
the incoming message with the locally available structure information, thus
updating the local structure information to reflect the complete subtree of
this node. Additionally, this node’s service type Aggregate is informed of
the new child with a newChild signal, and the contents of the jcc message are
forwarded as a jccFwd message towards the cluster head. All nodes on the
way to the cluster head and the cluster head itself use the presented informa-
tion to update their subtree structure information. Thus, all nodes between
the newly joined node and the cluster head keep a correct view of the subtree
structure. In particular, the cluster head as root of the tree knows all cluster
members and paths. Similar to the propagation of jccFwd messages, when a
child is considered lost, Cluster receives a childLoss signal from Aggregate.
In this case, it purges the lost node and its complete subtree from the subtree
structure, and sends a lost message towards the cluster head. All nodes on
the way to the cluster head and the cluster head itself do the same, so that
the knowledge of the lost node is completely removed from the cluster. The
handling of jccFwd and lost messages, i. e. updating and forwarding of local
information, is also performed in Cluster.

2.2. SDL Design of ReBaC2 34

When a parentLoss signal is received from Observe, or the membership struc-
ture of the cluster is unsatisfactory, e. g. because there are too few members,
after a while, this node tries to join a cluster by sending a jcq message. If
there are some jca replies, the node joins the cluster that sent the best reply
with its complete subtree, sending the subtree information to its new parent
with the jcc message, and propagating the changed cluster ID to its children
with the regular down messages. If there are no jca replies at all, the node
declares itself a cluster head with the nodes in its subtree as its members.

2.2.3.5 Service Type Route

Route uses the information stored in the local variables of process
ControlServices to answer routing queries from ReBaC2Management.
This allows for a usage of the clustering scheme as a locally confined proac-
tive routing scheme. Specifically, information on the subtree structure,
the path towards the cluster head, and gateway nodes is used by Route.
This information is provided by the other services of the process. The
queries between ReBaC2Management and Route are simple queries that are
structurally adapted to the clustering scheme. For instance, the next hop
towards the cluster head (signal getNextHopToHead), or the local and remote
gateway nodes towards a given cluster ID (signal getGw) can be requested.
The signal getNextHopsToTarget requests a sequence of node IDs that make
up the path to the specified target, but this sequence is only returned if it
is obtainable from the locally available information at this node, such as
the subtree structure or gateway status of known nodes. If the node is a
cluster head, the list of neighbouring cluster heads can be requested with
a getAllChs signal. A cluster head is considered to be neighbouring when a
gateway to its cluster is known. The list of neighbouring cluster heads can
be used to request a gateway to each of them individually.

To sum this up, a member node can provide the following routing informa-
tion:

• Link to direct neighbours such as parent node, children, or remote
gateways when this node is a local gateway

• Complete route to all member nodes in the node’s subtree

• Next hop towards local cluster head

As a cluster head, a node is additionally able to provide the following infor-
mation:

2.2. SDL Design of ReBaC2 35

• Complete route to all active remote gateways of the cluster

• List of neighbouring cluster heads and partial routes to them; the routes
are provided up to the remote gateway nodes, from where the route
towards the local cluster head is known.

2.2.3.6 Dependable Message Delivery

There is an acknowledgement scheme that is specified between AliveSender

and AliveReceiver. Some of the messages that are sent by block Control

require dependable delivery to the intended recipient node, i. e. message loss
is not acceptable for these message types. It is assumed that an alive message
is either received completely or not at all, as the underlying layer only delivers
error-free messages. Thus, for each dependable message that is sent in an
alive message, a unique seqNo message is also included in the alive message.
On receipt of a seqNo message, block AliveReceiver on the receiving side
generates an ack message to be sent back to the sender of the original message
with the next alive message. In block AliveSender, all unacknowledged
dependable messages are resent in every regular alive message until their
acknowledgement is received.

The messages that require dependable delivery are:

• jcc - Join Cluster Confirm

• jccFwd - Join Cluster Confirm Forwarded

• lost - Node Loss Notification

These are the three message types that propagate information on new or lost
members through the cluster towards the cluster head. When a node joins the
cluster, its jcc message to its new parent will start the immediate propagation
of this information in jccFwd messages through all nodes on the way to the
cluster head. The arrival of these messages must be guaranteed in order for
the cluster head to be able to have a correct view of its cluster members and
structure. Similarly, lost messages are generated at the parent node who has
lost a child, and need to be reliably forwarded towards the cluster head so
that the information on cluster members and structure remains consistent
and as accurate as possible at all times.

2.3. Metrics 36

2.3 Metrics

The metrics used for cluster formation and evaluation are defined in package
Metrics. This includes the definition of data structures representing the
different measurements made in the cluster, as well as the operators eval-
uating these measurements. These definitions are separated from the main
algorithm specification in order to make them more easily exchangeable.

2.3.1 Data Structures

There are several different data structures that are used for storing metrics
information. These data structures are presented in the following paragraphs.

DownMetric includes the information that is sent from the cluster head to all
its members. It currently includes the total number of nodes in the cluster,
the maximum hop distance between a member of the cluster and the cluster
head, and a consolidated assessment of the communication quality in the
cluster. This metric also includes a field with the number of hops that a
member node is away from its cluster head. This information is provided by
incrementing the value each time a down message is forwarded by a member
hop.

UpMetric contains the information that is sent from every member node
towards its cluster head. It contains aggregated information about respective
subtrees in the cluster. This may for example include the depth in hops of
the subtree, the number of nodes in the subtree, or the set of gateway nodes
in the subtree.

LocalChildMetric contains the additional information that is gained when
receiving a frame. Currently, it consists of a value for the communication
quality which is computed from the signal strength of the incoming frame.
This value is used together with UpMetric to assess the expected quality of
the cluster after a join operation that includes the given link into the cluster
tree structure.

ChildUpMetric combines the two types UpMetric and LocalChildMetric.
This data structure is needed by service type Aggregate when several re-
ceived messages with reception information are collected for later aggrega-
tion.

LocalMetric contains information that is locally available at the node, e. g.
the node’s battery status or the direct neighbours of the node that belong to
other clusters.

2.3. Metrics 37

2.3.2 Operators

The operator aggregate is used for aggregating the information of the node’s
subtree. It takes into account a set of ChildUpMetric representing the in-
formation from all children in the cluster tree and it also uses the locally
available information from LocalMetric. The operator generates a value of
UpMetric representing the node and its complete subtree. That value is then
sent to the node’s parent node. As an example, the operator computes the
maximum number of hops of all subtrees and adds one, using this value as
its own maximum number of hops in the subtree, or it adds up the numbers
of nodes of all subtrees, also adding one for itself.

The operator evaluate is used by service type Evaluate. It computes a
preference value from UpMetric and LocalChildMetric of a jcq message.
Locally available information is additionally considered. The preference value
is expressed as an integer number which is included in the jca message that is
sent if the preference is acceptable. Whether a preference value is acceptable
is determined by a comparison with PREF_THRESHOLD which is also defined
in package Metrics.

The operator makeDownMetric is used in service type Aggregate to convert
the aggregated information from all children, present as UpMetric, into a
DownMetric. This functionality is needed when the node is a cluster head,
and the cluster-wide aggregated information is propagated to all members of
the cluster in down messages.

The operator downIncrement performs the necessary modifications to
DownMetric values before they are resent to the next nodes outward from
the cluster head, e. g. incrementing the count of hops from the cluster head.

The operator clusterTooSmall is used in a cluster head to determine
whether the cluster quality is still satisfactory, e. g. the cluster is not too
small to stay independent. The operator is used in service type Cluster. It
assesses the cluster head’s set of direct children and the cluster tree struc-
ture. If the cluster is found not to be good enough to persist independently,
a cluster head tries and joins another cluster with its old cluster as a new
subtree.

2.3.3 Examples

Some examples of metrics that may be specified and used for the assessment
of the cluster structure are given in Table 2.1 and Table 2.2. In the left
column, the metrics as measured at a single node are given. The expression

2.3. Metrics 38

local
observation
L(n′) or L(n) if
dependent on
child node n

up metric in
node n: U(n)

aggregated
value for parent
node n′: U(n′)

global down
metric U

L(n) = 1 if a
child is present

depth of subtree L(n)+max U(n) max hop
distance
between node
and cluster head

L(n′) = 1 # nodes in
subtree

L(n′) +
∑

U(n) # nodes in
cluster

L(n′) =
estimated
remaining
operation time
from battery
power

min remaining
operation time
of subtree

min(L(n′), U(n)) min remaining
operation time
of cluster
members

L(n) = wireless
transmission
quality to child
n; L(n) ∈ [0, 1]

lowest
communication
quality in
subtree

min(L(n)·U(n)) lowest
communication
quality from
member to
cluster head

L(n′) = #
neighbours
within same
cluster except
parent and
children

intra-cluster
links unused by
tree

L(n′) +
∑

U(n) 2· # additional
links between
nodes of the
cluster

Table 2.1: Possible metrics

2.3. Metrics 39

local
observation
L(n′) or L(n) if
dependent on
child node n

up metric in
node n: U(n)

aggregated
value for parent
node n′: U(n′)

global down
metric U

L(n′) = set of
cluster IDs of
neighbouring
nodes of other
clusters and one
gateway node
for each cluster

set of other
clusters
reachable from
subtree and
their gateways

L(n′) ∪
⋃

U(n) set of clusters
neighbouring
the cluster with
gateways

L(n′) = # links
to nodes of
other cluster

links from
subtree out of
cluster

L(n′) +
∑

U(n) # links out of
cluster

L(n′) =
direction and
speed of motion,
e. g. from GPS

motion
similarity degree

polar coordinate
interval of
L(n′), U(n) or
other enclosing
area

mobility /
cluster cohesion

L(n) = change
of transmission
quality to node
n within last
time period;
L(n) ∈ [−1, 1]

max link quality
change in
subtree

max(|L(n)|, U(n)) mobility: max
link quality
change in
cluster

L(n′) = #
parent losses
within last time
period

sum of all
parent losses in
subtree in last
time period /
divide by #
nodes in subtree
for meaningful
values

L(n′) +
∑

U(n) stability: #
parent losses
divided by total
number of nodes

Table 2.2: More possible metrics

2.4. Properties 40

L(n′) is used for a value that is locally measured at the node n′ and relates
only to the node itself, and L(n) is used for a value that is measured at
the node, but that relates to a specific child n of the node. In the second
column, the meaning of the aggregated values U(n) received in up messages
from the children is stated, while the third column gives the calculation rule
for deriving this node’s up metric value from the children’s values U(n) and
the node’s own value L(n) or L(n′). The last column states the meaning of
the value that is aggregated for the complete cluster. This value is computed
at the cluster head and may be propagated to all cluster members with the
down messages if this is desired.

2.4 Properties

When devising a new clustering scheme for mobile ad hoc networks, care
must be taken to ensure that it yields results, i. e. that it terminates when
the topology is stable, that it establishes suitable clusters in case of node
mobility, and that the resulting structure satisfies the conditions of a cluster-
ing structure (depending on the definition used). In the following sections,
the properties of ReBaC2 clustering when applied to a stable topology are
discussed.

2.4.1 Partitioning

The clustering scheme constructs a partitioning of the given network. This
is achieved by the fact that every node has exactly one cluster ID at a time,
and the nodes with a common cluster ID belong to the same cluster. If a
node loses contact with its cluster and thus ceases to belong to its cluster, it
either becomes a member of another cluster or declares itself a cluster head,
using its own ID as its cluster ID.

2.4.2 Convergence

As the behaviour of the clustering scheme is repair based, it is not obvious
at first sight that the repair actions lead to a stable clustering structure in a
stable topology. However, a proof can be given for the case that clusters are
not artificially split, and all nodes taking part in the network are switched
on simultaneously.

Consider h, the total number of cluster heads in the network. In the begin-
ning, h = n, the total number of nodes in the network, because every node

2.4. Properties 41

declares itself a cluster head when it is started. When a cluster head decides
that the quality of its cluster is not sufficient anymore, it tries to join another
cluster with its complete subtree. If this action is successful, the old cluster
merges with the new one, and the total number of cluster heads h decreases
by one. If no join action takes place, the old cluster head stays cluster head
and keeps its members in the cluster. Thus, in this case, the total number
of cluster heads h stays unchanged. This means that with every action, the
number of cluster heads h either decreases or stays unchanged, where h stays
repeatedly unchanged only in cases where there is no change in cluster struc-
ture, implying that there cannot be more cluster structure changes than total
nodes in the network. This means that, in a stable topolology, the cluster
structure formation will definitely reach a convergent state in finite time.

The constraint of a stable topology can be loosened to a constraint only
ruling out mobility of the nodes. In this case, nodes may still appear in or
disappear from the network at any time. When a new node appears, it will
declare itself a cluster head, increasing h by one. When a node disappears,
its former cluster will continue to exist if the disappearing node was not
a cluster head. The children of the disappearing node will try and rejoin
another cluster. If they are successful, the former children will join the new
cluster with their complete subtree. If a join operation is not possible for
a child, the former child will declare itself a cluster head, increasing h by
one. As the number of children of a disappearing node is not generally
bounded, no statement can be made regarding the increase of h due to a
node’s disappearance. Nevertheless, it can be said that if the number of
node disappearances is finite, then the number of cluster structure changes
is finite as well, and after each node disappearance, a convergent state will
be reached after a finite number of structure changes.

A similar argument can be derived for the case of node mobility. A node that
moves away from some nodes, and into the reach of other nodes essentially
has the same effect as if the node had disappeared from its previous position
and reappeared at its new position. If the node movement is broken down
into such elementary topological changes, the argument above can be used
to show that a convergent state can be reached some time after the node
movement.

Chapter 3

Cluster Based Routing

3.1 Introduction

In this work, a hierarchical routing scheme consisting of ReBaC2 and an
adaptation of AODV routing, AODVlight, has been composed. As the clus-
tering scheme aggregates intra-cluster routing information, it can be seen as a
proactive routing mechanism working in a limited area, while AODVlight, on
the other hand, supplies the joint mechanism with the reactive functionality
needed to respond to all routing requests that cannot be handled by ReBaC2.
AODVlight has been changed to work on an overlay network constructed by
ReBaC2, thus reducing the number of messages necessary for AODVlight to
search the complete network.

This chapter introduces the hierarchical routing mechanism that has been
constructed with the help of ReBaC2. A hierarchical routing mechanism is
desirable in ad hoc networks with a large number of nodes, because it reduces
the complexity of the network for the single nodes. Without a hierarchical
structure, information about the complete network needs to be stored either
at every node or at some explicitly selected central nodes. If the network is
too large, this is a large storage overhead and many management messages
are necessary to keep the stored information up to date. With a hierarchical
approach, the network information can be divided and allocated to different
nodes.

The hierarchical structure supplied by ReBaC2 is used to alleviate the need
for large amounts of routing information in specific points of the network.
With the network being partitioned into clusters, only cluster-wide informa-
tion is collected and stored at centralised points of each cluster. The cluster

3.2. Routing Framework 43

heads provided by ReBaC2 have been chosen as the central points of rout-
ing information aggregation. Thus, the routing structure of every cluster is
stored centrally in the cluster head. This solves routing problems that occur
wholely within the cluster.

For routing problems that occur between different clusters, some inter-cluster
communication is necessary. To this end, if two neighbouring nodes belong
to different clusters, they are regarded as gateways, i. e. they provide the
capability of the two cluster heads to communicate. For each of these so-
called neighbouring clusters, a pair of gateways is stored at both cluster heads
in order for each cluster head to be able to communicate with all cluster heads
of neighbouring clusters.

It seems reasonable to choose a well-known routing scheme for ad hoc net-
works to solve the problem of route discovery between multiple clusters, as
these routing schemes have been designed for the kind of topological uncer-
tainty that is unavoidable with mobile ad hoc networks. With a proactive
routing scheme, in a large network, a large amount of routing information
needs to be stored although it is not certain that this information will be
needed. Furthermore, with high mobility, the information may be already
outdated when it is needed. The reactive approach to routing seems more
suitable to a network of arbitrary size, as there is no need to store all available
information, but only information on paths that are actually used. As the
routing information is established on-demand, it is more likely to be accurate
at the time of use.

Choosing a reactive routing scheme for the communication between the clus-
ters that have been formed by ReBaC2 still leaves some questions open. The
routing scheme needs to be adapted to be able to take advantage of the hi-
erarchical structure provided by ReBaC2. The approach taken here is to use
a reactive routing scheme on the higher level of abstraction, i. e. on a cluster
basis rather than a node basis. With the structural information present at
the cluster heads, the higher-level routing scheme can be employed to es-
tablish routes between cluster heads, while the lower-level, i. e. intra-cluster,
routing problems can be solved by ReBaC2.

3.2 Routing Framework

In order to be able to compose different routing schemes to form a new one,
the routing framework for mobile ad hoc networks devised in [FGG07] is
used. The block structure of its SDL specification can be seen in Fig. 3.1.
The block routingMiddleware consists of a packet forwarder and a routing

3.2. Routing Framework 44

block routingMiddleware 1(1)

routing:
ReBaC2Aodv pf:PacketForwarder

deMux:DeMux

deFragmenter:DeFragmenter

medRenaming

AR

C1

SendData

AR

APP
MGMNT

C3RouteReq

RouteResp
RTG

RInf

C5

SendData

CDC

C4

RecvData

Register

DEMUL

C6

SendData,
RecvData

Register,
SendData

DEMUL

C2

RecvData

Register

DEMUL

MED

C17 RecvData

SendData

GIN

GOUT

C8
SendData

RecvData

C9
WLAN_send

WLAN_recvX

RM

Figure 3.1: Block routingMiddleware

3.2. Routing Framework 45

scheme. The packet forwarder forwards incoming packets to other nodes in
the network if required and obtains the necessary routing information from
the block routing.

The framework has been designed in order to make a large variety of different
approaches to routing possible. This is achieved by defining a simple interface
and making the routing mechanism exchangeable. The routing functionality
can be defined by specifying a block type that is then instantiated as block
routing.

When a message intended for another node is examined by the
PacketForwarder, a RouteReq signal is sent to the routing component.
The routing component replies to each RouteReq signal with a RouteResp

signal informing the PacketForwarder of the path the given packet should
take.

The RouteReq and RouteResp signals use a data type called Path. It can
represent unicast and multicast paths in a network. In the Path type, there
are different types of links between nodes, most notably direct links and
standard links. A direct link represents an actual link between two nodes on
the physical layer. A standard link represents the fact that the two nodes
should be able to be connected with a sequence of direct links across other
hops, but that the exact path information is currently not known. The
combination of these two link types makes it possible to provide a Path from
source to destination, even if the actual network path is only partially known.
The part that is known is given in the form of direct links, and the unknown
part is left for further elaboration in the form of a standard link.

The nodes in the Path type can have different properties. One of these
properties is the search flag. If this is set for a node, it means that the
path to this node is being looked for at the moment. So, a typical RouteReq

signal contains a Path from source to destination, where a part of the path
consists of a standard link, and the node that the standard link leads to
is marked with the search flag. This means that the routing scheme that
receives the RouteReq signal should try to replace the standard link to the
node in question by a sequence of direct links, or at least by some direct links
and a standard link, giving part of the information that is required. If the
routing scheme does not have sufficient information to replace the standard
link in question, it leaves the Path unchanged. This makes it easy to use
the same Path in consecutive queries to different routing mechanisms. Each
mechanism adds the information it has to the Path and returns the modified
Path with the RouteResp signal. This path can then directly be used in
another RouteReq signal to another routing mechanism.

3.3. Division of Activities 46

The Path type explained here makes is possible to build the path to a desti-
nation node on the way. The traffic is not completely source routed, but it is
not only routed by the single hops it visits either. It is merely a combination
of the two. Portions of the path can be routed similar to source routing by
specifying a sequence of direct links in the path. At other points in the path,
the decision about the next hop from a certain node can be left open until the
message reaches that node, and that node can then provide one hop, a part
of the path, or the complete path, depending on its knowledge. This feature
is well suited for the hierarchical routing that is established in this work,
because the part of the route that lies within one cluster can be supplied by
one node, while the parts of the route that lie within different clusters can
be left vague until the message arrives there. It is even possible to specify
a path on the hierarchically abstracted view of the network by providing a
sequence of standard links between nodes of different clusters, each of which
will be replaced by a sequence of direct links at each cluster.

Furthermore, the communication protocol that is used in the framework
supports the use of hierarchical application-specific addressing. With the
help of this feature, the routing functionality can be further split into
sub-mechanisms each using its own address space, connected within block
routing by multiplexing agents. In this way, new routing schemes can be
easily devised as compositions of other mechanisms.

The complete SDL system can be seen in Fig. 3.2. It consists of an ex-
ample application that can regularly send data to other nodes, and block
routingMiddleware, which contains the forwarding and routing functional-
ity as shown in Fig. 3.1.

3.3 Division of Activities

Using two different routing protocols at the same time makes a clear divi-
sion of responsibilities between the two necessary. When a routing problem
emerges, it is desirable to make use of the two different protocols in a way
that saves resources.

For example, if there is a proactive scheme, it can be queried without incur-
ring a penalty in terms of messages. On the other hand, the proactive scheme
will probably have been configured in a way that it cannot answer queries
relating to the complete network, or else another routing scheme would not
be required. So, a query to the proactive scheme may be met with an invalid
answer if the knowledge to answer this query is not present.

3.3. Division of Activities 47

system GenericRouting 1(1)

app:DummyApplication

routingMiddleware

AR

Register,SendData

RecvData

App

RM

WLAN_send

WLAN_recvX

Figure 3.2: SDL system diagram

In this work, it has been decided to use ReBaC2, the existing clustering
algorithm, as a proactive scheme confined to a certain locality. All queries
reaching outside of that locality are processed by a reactive scheme. Addi-
tionally, the reactive scheme being used for the network-wide queries should
be able to benefit from the hierarchical structure provided by ReBaC2. This
combination is supposed to make the reactive scheme more efficient by its
usage of the proactively established cluster-wide information. The division
of responsibilities between the two routing schemes has been made depend-
ing on the locality of the routing problem. For routing problems that occur
within a subtree of the same cluster, ReBaC2 is responsible without addi-
tional involvement of the other scheme, and for all other routing requests, a
reactive routing scheme is used.

For the other routing component besides ReBaC2, a reactive routing scheme
is preferred. This is due to the fact that reactive schemes do not need to col-
lect information on the complete network in advance. Thus, using a reactive
scheme makes the message and storage complexity of the establishment of
the basic network structure independent of the actual size of the complete

3.4. Choice of Routing Mechanism 48

network. (Additional messages are of course needed once specific routes are
requested from the mechanism.) ReBaC2 as a locally confined proactive
routing scheme is dependent in its complexity only on the maximum size of
a cluster, so its complexity can be independent of the total network size if
the cluster formation metrics are adjusted accordingly.

A further requirement to the second routing mechanism is that it should be
able to take advantage of the hierarchical structure provided by ReBaC2.
This can for example be achieved by using an overlay network structure that
is inferred from the clustering structure, e. g. associating each cluster built
by ReBaC with one node in the overlay network. The routing scheme should
thus be easily adaptable to be used in an overlay network.

3.4 Choice of Routing Mechanism

The routing protocol was chosen with the following considerations. The
cluster structure should be used to to create a hierarchical routing scheme. In
order to achieve the level of abstraction necessary for hierarchical structuring,
an overlay network is defined. This abstract overlay network is implied by
the cluster structure on the underlying network.

The routing mechanism used on the abstract overlay network needs to be able
to cope with typical mobility related issues, such as unpredictable topology
change, because these properties of the underlying network cannot be hidden
from the overlay network. Furthermore, a reactive routing scheme is desir-
able in order to save bandwidth at times when no new routes need to be
discovered.

For the above reasons, AODVlight (see Section 1.2.2) was chosen as the rout-
ing scheme to be applied to the overlay network generated by ReBaC2. In
order to build a routing scheme on the existing clustering structure, AODV-
light has been adapted to form a hierarchical routing mechanism using the
clustering structure to provide the abstraction from the underlying network.

The cluster structure is used to generate a dynamic overlay network depend-
ing on the pair of source and receiving node. A node of the underlying
network is a node in the overlay network if it is a cluster head or the source
or destination of the message that is sent. There is a link in the overlay net-
work between two cluster heads if there exists a pair of gateway nodes each
of which belongs to one of the clusters of the cluster heads being connected,
and the two gateway nodes are direct neighbours in the underlying network.
There is also a link in the overlay network between a cluster member and its
cluster head.

3.5. Coordination of ReBaC2 and AODVlight 49

The routing information that is necessary to deliver data along a link of the
overlay network is locally present as a part of the cluster structure informa-
tion in the nodes.

3.5 Coordination of ReBaC2 and AODVlight

In block type ReBaC2Aodv, the composition of the two aforementioned mech-
anisms is specified. The design of the new routing scheme is influenced by
the framework being used, and by the clear separation between ReBaC2 and
AODVlight that is to be preserved. Thus, the two mechanisms appear as
separate blocks connected only via manager and adapter blocks (see block
type ReBaC2Aodv in Fig. 3.3).

The adapter block ReBaC2AodvAdapter is a bidirectional multiplexer. The
combination of both mechanisms is viewed as a single source for routing infor-
mation by the packet forwarder. This simplification is achieved by a central
management component, the block ReBaC2AodvManager. It directs incom-
ing RouteReq signals to both components and consolidates the information
yielded from these queries.

3.5.1 Behaviour of AODVlight

Resulting from the above mentioned generation of an overlay network is the
following behaviour of the employed AODVlight scheme. AODVlight works
only on the overlay network, i. e. on a part of the network consisting of source
node, destination node, and all cluster heads. AODVlight is used to reac-
tively find a path on the overlay network. To this end, the broadcast mecha-
nism that AODVlight relies on is changed such that it no longer sends local
broadcasts but sends messages that are broadcasts on the overlay network.
Thus, far fewer nodes participate in the AODVlight route discovery process
than if pure AODVlight was used without clustering. This also means that
AODVlight routing information is only kept at the source and destination
nodes of a route and at intermediate cluster heads.

The management behaviour that is used to resolve route requests to the
combined routing scheme is shown in Fig. 3.4. When a RouteReq signal is sent
to block ReBaC2AodvManager, process InstantiatorReBaC2Aodv creates a
new instance of process ReBaC2AodvManager, which processes exactly one
RouteReq signal. This process defines the order in which the route requests
are handled by the two routing schemes. Currently, an incoming route request

3.5. Coordination of ReBaC2 and AODVlight 50

block type ReBaC2Aodv 1(1)

ReBaC2AodvManager

rebac2:ReBaC2 aodv:AodvLight

ReBaC2AodvAdapter

MGMNT
RouteResp

RouteReq

MGMNT

RouteReq

RouteResp

REBAC2M

RouteReq

RouteResp

AODVM

RouteReq

RouteResp

MGMNT MGMNT

RInf

REBAC2A

Register, SendData

RecvData

RINF

AODVA

Register, SendData

RecvData

RInf

RecvData

Register, SendData

RInf
Register, SendData

RecvData

Figure 3.3: Block type ReBaC2Aodv

3.5. Coordination of ReBaC2 and AODVlight 51

InstantiatorReBaC2Aodv ReBaC2 AODVlight

RouteReq

ReBaC2AodvManager

ram1

add table entry

RouteReq
RouteReq

RouteResp

RouteReq

RouteResp

children: search

RouteReq

RouteResp
RouteResp

msc rebac-aodv-management

Figure 3.4: Processing of routing queries in the management of ReBaC2 and
AODVlight

3.5. Coordination of ReBaC2 and AODVlight 52

is first sent to ReBaC2. ReBaC2 answers it with as much information as it
has present, and leaves the rest of the query unanswered. The path returned
by ReBaC2 is then sent to AODVlight in a new RouteReq signal, so that
AODVlight tries to answer the queries remaining from ReBaC2. AODVlight
uses its route discovery process to find out which of the neighbouring cluster
heads is the next hop on the overlay network towards the destination. In the
resulting answer, all nodes that are direct children of the processing node are
marked search, and the request is again sent to ReBaC2 for processing. This
step is necessary because the result from AODVlight may contain nodes as
next hops that are next hops in the overlay network, but not actually in the
underlying network. Thus, these overlay next hops nodes have to be looked
up by ReBaC2 in order to make the resulting path feasible on the underlying
network.

In this sequence of route requests, each process receiving a route request adds
the relevant information that it has to the path, and the complete path with
the newly added information is then sent back to process ReBaC2AodvManager
with a RouteResp signal. Thus, with the given sequence of route requests,
the information in the path is incrementally completed with the knowledge
of both routing schemes. ReBaC2 is considered first because it is a proactive
scheme, meaning that no communication overhead is incurred by requesting
information from it, no matter whether the requested information is available
or not. After that, when the route request is sent to AODVlight, its reactive
route discovery is only used if the path still lacks information on the next
hop towards the destination. In the end, the proactive ReBaC2 is used to fill
in the local information that may have been left out by AODVlight because
of its operation in the overlay network.

3.5.2 Routing Query Processing by ReBaC2

An example of a routing query being processed by ReBaC2 components is
shown in Fig. 3.5. The service rou is the instance of service type Route in
process ControlServices (see Fig. 2.13), and process management is the only
process in block ReBaC2Management (see Fig. 2.7). The process management
is the component that answers incoming RouteReq signals with the help of
the cluster-based information available from service type Route. The requests
are answered by adding all available information to the path received with
the request and returning the modified path with a RouteResp signal.

When the RouteReq signal is received by process management, it searches the
given path for the address to be looked up, and finds the special address
ADDR_ALLCH, which means that the incoming query requires information for

3.5. Coordination of ReBaC2 and AODVlight 53

«ReBaC2Management»

management

Route

rou

RoutReq

resolve ADDR_ALLCH

getNextHopToHead

deliverNextHopToHead_IAmHead

I am head
getAllChs

deliverAllChs(chs)

loop through chs

getGw(ch1)
1st list item

deliverGw(gw1)

getNextHops(gw1!localGw)

deliverNextHops(nextHops)

add path to ch1

getGw(ch2)
2nd list item

deliverGw(gw2)

getNextHops(gw2!localGw)

deliverNextHops_IAmTarget

add path to ch2

no other queries

RouteResp

msc management

Figure 3.5: Processing of routing queries in ReBaC2 management

3.6. Collaboration 54

broadcasting a message, e. g. an RREQ message, on the overlay network, i. e.
to all neighbouring cluster heads. To reach all neighbouring cluster heads,
a message first needs to be delivered to the local cluster head. This is why
the first request sent to service rou requests the next hop towards the local
cluster head. The answer to this request shows process management that
this node is currently a cluster head. This means that the information on
the neighbouring cluster heads is present at this node. The signal getAllChs

requests the list of neighbouring cluster heads. Assume that this list includes
two cluster heads, namely ch1 and ch2. For each of these cluster heads, the
gateway towards its cluster is requested from rou. A gateway is represented
by the data type ClusterGateway, which includes the gateway node in the
local cluster (localGw), the gateway node in the remote cluster (remoteGw),
and the remote cluster ID (remoteCid).

From the gateway information of gw1, the local gateway node ID is taken and
looked up at rou. The information on the path towards the local gateway
is present at rou because it involves only intra-cluster information. For ch1,
the hops from this node towards the local gateway are added to the path as
direct links, then the direct link from to local gateway to the remote gateway
is added, and a standard link from the remote gateway to its cluster head.
The standard link can be replaced by explicit direct links at the remote
gateway node, because it is a member of the target cluster and thus the
information on the path towards its head is present there.

For the second cluster head in the list, the gateway is also requested, and
the path to the local gateway is looked up. In this case, the local gateway
towards ch2 is identical to this node itself. Thus, the resulting path consists
of a direct link from this node to the remote gateway, and a standard link
from the remote gateway to its cluster head. As there are no other queries,
i. e. nodes marked as search, in the path received with the RouteReq signal,
the processing of the query has been completed, and the path with the added
information is sent back to the requesting process in a RouteResp signal.

3.6 Collaboration

This section describes the behaviour of the resulting distributed algorithm.
First, the behaviour of ReBaC2 is presented, and second, the function of the
routing protocol resulting from the combination of ReBaC2 and AODVlight
is detailed. For an example of a network structure with clusters and gateways
see Fig. 3.6. In this diagram, the blue nodes are cluster heads, and the other
nodes are cluster members. The two nodes that share the link between the

3.6. Collaboration 55

ch1

ch2

gw1

gw2

Figure 3.6: Two clusters linked by gateways

two clusters are gateways. The link of the resulting overlay network is shown
as an orange bent line with arrowheads.

The transformation of the underlying network to the overlay network is de-
scribed in Section 3.4. It is achieved by the clustering scheme in the following
way. The clustering structure is constructed as described in Section 2.2.2.
The cluster heads have knowledge of all members of their cluster, and of
the complete paths towards all members of their cluster. Additionally, for
each neighbouring cluster, they know which of their members has a direct
neighbour that belongs to the neighbouring cluster. For each of these local
gateways (gateways that are in this cluster), the remote gateway (gateway
in the remote cluster) and cluster ID (ID of the remote cluster head) is also
known. This makes it possible to explicitly construct the route up to the
remote gateway at the cluster head, so that the message can be delivered
into the remote cluster with the knowledge of the sending (or forwarding)
cluster head. From there, the intra-cluster route towards the cluster head
can be used.

Every node that is a member of a cluster knows the next hop towards its
cluster head. As the link structure within a cluster is that of a tree rooted

3.6. Collaboration 56

in the cluster head, every node has the possibility to send a message to its
cluster head, even if it does not know the complete path.

With the knowledge present in the clustering structure, it is possible to es-
tablish a path from one cluster head to another neighbouring cluster head
without acquiring additional information. This capability is used by AODV-
light when addressing neighbouring cluster heads. To achieve this, the special
address ADDR_ALLCH has been introduced that denotes the local cluster head
at a member node or all neighbouring cluster heads at a cluster head. It can
thus be seen as the equivalent of a local broadcast in the overlay network.
This address is used in AODVlight as destination of the otherwise locally
broadcast RREQ messages. A message addressed to ADDR_ALLCH is first de-
livered to the local cluster head. There, it is explicitly addressed to all remote
gateways of neighbouring clusters. As the paths to the remote gateways are
completely known at the cluster head, they are included in the message.
From the remote gateways onwards, the message is vaguely addressed to the
then local cluster head. The remote gateway is itself a member of its cluster
and thus has the capability to deliver the message towards its cluster head.
A receiving cluster head treats incoming RREQ messages as locally broadcast
flooding messages and either replies to them or resends them on first receipt
towards its neighbouring cluster heads.

In more detail, the following happens. When the path to a destination is
not known, the node wishing to send a message starts a RREQ message. It
is addressed as a local broadcast in the overlay network. This is achieved
by addressing it to the special address ADDR_ALLCH. The underlying network
delivers these messages to all neighbouring nodes of the overlay network, i. e.
to all neighbouring cluster heads and to the destination if it is available.
Two cluster heads are said to be neighbouring when they are linked in the
overlay network. Whether the destination is available at a cluster head can be
found out by querying ReBaC2 about the destination node. As the cluster
head is the root of the tree that connects all cluster members, it knows
all cluster members and can answer the question whether the destination
is in this cluster. First, AODVlight tries to send the message only to the
destination node itself. If this succeeds because the destination is known to
ReBaC2, the destination node receives the RREQ message and answers it.
The answer is a RREP message that is sent along the path of cluster heads
towards the cluster head of the source’s cluster and then the original source
itself. When the overlay broadcast message is received at a cluster head
where the destination is not directly available, the message is rebroadcast to
all neighbouring cluster heads.

3.7. Conclusion 57

When a RREP message is delivered backwards, it is not addressed to all
neighbouring cluster heads, but explicitly to the intended neighbouring clus-
ter head. Together with the information on local and remote gateway nodes,
the cluster head also knows the remote cluster head’s ID, and can thus choose
the correct pair of gateway nodes to forward the message to.

When the RREP message is received at the node that originally started the
request, the route is completely set up. The path from the source to its
cluster head consists of next hop information towards the cluster head. The
path from the source’s cluster head to the destination’s cluster head possibly
contains other cluster heads. Each of these head-to-head links consists of
the explicitly addressed path from the sending cluster head to the particu-
lar remote gateway node, and the next hop information from the gateway
node to its cluster head. At the destination’s cluster head, the path informa-
tion on cluster members is used to explicitly address the message up to the
destination node.

Messages in the opposite direction can be delivered in a similar manner,
but a completely new route request is necessary, because AODVlight does
not set up the reverse path when establishing a link. However, the links
of the overlay network are bidirectional because the gateways in ReBaC2
always inform both cluster heads of their existence. Thus, a route for the
opposite direction can be found by AODVlight if the original route has been
established.

3.7 Conclusion

The combined routing scheme that has been proposed is a hybrid routing
scheme consisting of a proactive and a reactive part. The proactive part
is used for a limited area around the nodes, the clusters, and the reactive
part is used when the routing problems reach beyond this limited area. The
advantages of the proposed combination of routing schemes are summarised
in the following paragraphs.

A hierarchical abstraction of the underlying network is constructed. The
proactive part of the scheme is used for all routing requests that can be
answered within the network parts defined by the hierarchical structure, i. e.
the clusters. This means that for such a route request, no additional route
discovery process is needed.

For route requests that reach outside the clusters, the reactive functionality
is used. This has the advantage that a reactive route discovery is not needed

3.7. Conclusion 58

in all cases but only in the cases where several clusters are affected by the
route. Additionally, the reactive routing scheme uses the overlay network
implied by the hierarchical structure in order to more efficiently search the
complete network. By using an abstraction of the actual network, the reactive
scheme needs to cope with far fewer nodes, thus reducing the total number of
messages and the memory requirements for the nodes of the reactive scheme.

Chapter 4

Simulations

The SDL specification of the algorithm was transformed to C++ code us-
ing the Configurable SDL Transpiler and Runtime Environment (ConTraST)
[FGW06]. The behaviour of the resulting executable was simulated with
ns+SDL [KGGR05], an extension of the network simulator ns2 [ns2].

Simulations have been conducted with the following parameters:

• 56 nodes, randomly placed on an area of 400·400 metres, no node mo-
bility

• Wireless communication radius of each node: 73 metres

• Parameter to ReBaC2: minimum cluster size set to 4, i. e. a cluster
should have at least 3 members apart from the cluster head.

The simulation results of one of these scenarios are depicted in the following
diagrams. In these diagrams, a red square denotes a node that is a cluster
head and a black plus sign shows a normal node. A black, solid line shows
a link that is part of the cluster structure, i. e. that links two members of
the same cluster, and a green, dotted line shows a link between two gateway
nodes of different clusters.

In this simulation, all nodes are switched on at the beginning. After being
switched on, all nodes declare themselves cluster heads and wait for member
nodes to join their clusters. This state is shown in Fig. 4.1. When the cluster
does still not have a sufficient number of members after noChildrenTimeout,
the cluster heads start trying to become a member of another cluster. In the
simulation, the values for noChildrenTimeout have been randomly chosen
so that the cluster heads do not all start joining other clusters at the same
time.

60

Figure 4.1: Reachability of nodes

Fig. 4.1 also shows the topology of the network that is used in the simulation.
There is an edge between all nodes that can directly communicate. The
diagram has been generated at the beginning of the simulation, when all
nodes are cluster heads, and it shows that every node regards itself as a
gateway to all other neighbouring nodes, i. e. clusters.

The cluster structure that has been established by ReBaC2 is shown in Fig.
4.2. Cluster heads are depicted as red squares. Note the cluster in the lower
right corner that consists of fewer than four nodes even though it is not
completely isolated. This situation persists because the cluster head of the
small cluster is not directly reachable by nodes of another cluster. Thus,
when it tries to find other clusters to join, it does not find any, and it stays
a cluster head with its few members.

Fig. 4.3 shows the cluster structure with the gateways between the clusters.
Both nodes at the end of a green dotted line are gateway nodes for their
cluster, connecting their cluster to the other cluster they have a link to. There
may be several gateway links between a pair of clusters, but in ReBaC2, only
one gateway per neighbouring cluster is used at the cluster head. Note that
a node can be a gateway to several other clusters at the same time.

In Fig. 4.4, the orange multi-hop arrows show the path that the AODV RREQ

message has taken on the overlay network to establish the given route. The

61

Figure 4.2: Cluster structure

Figure 4.3: Cluster structure with gateway links

62

Figure 4.4: Cluster structure with data path

63

path of an application data message as established by the combined routing
scheme is shown with blue arrows. From the source node, the application
data message is first sent towards the source’s cluster head. From there, it
is sent via two intermediate clusters, i. e. via their cluster heads, towards the
destination’s cluster head. In this case, the destination node itself is a cluster
head.

A data message may use the same edge of the network graph twice. In Fig.
4.4, this happens at the edge connecting the source node’s subtree to its
cluster head. Such a situation occurs whenever the source of the message
is in a common subtree with the destination of the message. Source and
destination of the message may in this case also be gateways receiving from
and sending to other clusters. In the case shown in Fig. 4.4, the source node
and the destination gateway are both in the same subtree of the cluster head,
thus sharing one hop in their paths to and from the cluster head. As the
information on gateways is only used at the cluster head, the message needs
to be sent to the cluster head in order to be addressed to the correct gateway.
This is, of course, not an optimal routing solution. A possible solution to
this problem will be outlined in Section 5.2.2.

Another interesting observation is that the last hop the data message actually
takes is not a part of the planned route towards the destination. The planned
route uses only links that are part of the cluster structure tree, as depicted
by blue, dashed arrows. In this case, when the gateway of the destination’s
cluster resends the message, the message is directly overheard by the actual
destination node of that message. In such a case, the destination node accepts
the data message even if it is not on the intended path. The nodes on the
intended path have no knowledge about the fact that the message has already
been received by the destination and thus also forward the message along the
intended path towards the destination.

The above behaviour results in duplicate delivery of the data message, mean-
ing that the medium is not optimally used. While in this special case the
problem can be solved by an optimisation of intra-cluster paths as will be
described in Section 5.2.1.1, such incidents are still generally possible with
the hierarchical network structure constructed by the algorithm.

An example of another such case of duplicate delivery due to suboptimal
routing paths is shown in Fig. 4.5. Assume that the message comes from
the cluster on the left, and is thus sent from gw2 to gw1. The intended path
goes through the cluster head of the destination’s cluster, ch1, and then
to the destination node dest. When gw1 sends the message to the cluster
head, dest overhears the message and delivers it to its application layer.
The cluster head will additionally forward the message because it does not

64

ch1

gw1

dest

gw2

Figure 4.5: Data path shortcut scenario

know that the message has already been received by the destination. This
example shows that the problem may exist even though the intra-cluster link
structure is simple and contains no indirect links to the cluster head.

Returning to Fig. 4.4, the path that the AODV RREQ message takes to
discover the route is shown by orange arrows spanning multiple links. These
arrows show the high-level view on the network that AODV uses. The RREQ

message originates from the source node and is first sent towards the local
cluster head. From there, the message is broadcast to all other neighbouring
cluster heads. (In this diagram, only the path of the successful RREQ message
is shown.) Once arrived at the destination’s cluster head, the RREQ message
is unicast to the destination node so that the destination node can generate a
RREP message and issue a destination sequence number for it. The abstract
path found by AODV together with the detailed information available in
ReBaC2 leads to the resulting data path that is shown in the diagram.

Another application data path with different source and destination nodes
can be seen in Fig. 4.6. In this example, the delivery of the data message
to the destination node is of interest. As shown by the orange multi-hop
arrows, AODV finds the route that uses the destination node’s cluster head.
In this case, the destination node is at the same time the gateway for the
neighbouring cluster that the message is received from. The route through
the destination cluster as originally intended consists of the destination clus-
ter’s gateway, the path to its cluster head, and the path to the destination
node. In this case, this would mean traversing the two hops between the
destination and its cluster head twice. What actually happens is that the
destination node, when receiving the message, identifies the incoming mes-
sage as addressed to itself, and accepts it. Despite the fact that the path
information in the message instructs the node to forward the message to-
wards its cluster head, it does not do so as long as it is the only destination

65

Figure 4.6: Cluster structure with another data path

66

node of the message. The route that is actually used by the data messages
is shown in the diagram by blue arrows.

The simulations have shown that the composition of a hybrid routing scheme
using the routing framework provided in [FGG07] is feasible, and that it
yields a functional routing scheme while at the same time allowing for the
reuse of components such as AODVlight. The resulting algorithm works in
different scenarios, some of which have been shown in this chapter. The
simulations have also shown that while the route discovery process works
reliably, there is some room for improvement of the resulting routes in terms
of path length and bandwidth utilisation. Possible improvements to the
routing scheme will be discussed in Section 5.2.

Chapter 5

Conclusion and Outlook

5.1 Conclusion

In this thesis, the second version of the repair based clustering algorithm,
ReBaC2, has been presented. Its maintenance based approach has been de-
signed to be suitable for mobile scenarios, as this allows for a quick adaption
of the cluster structure to topology changes and thus produces a more reli-
able clustering structure. There have been some enhancements compared to
the first version of this algorithm.

One improvement in the second version of the mechanism is the exchange-
ability of the cluster formation metrics. These metrics can now be specified
separately from the algorithm behaviour, thus making it easier to adapt the
scheme to specific needs. Another addition is the new support for the use of
the clustering algorithm as a small-scale proactive routing scheme for intra-
cluster routes. To make ReBaC2 more tolerant of control message loss when
maintaining the cluster structure, a dependable message delivery scheme has
been specified for some of the clustering message types.

The feasibility of the composition of different routing schemes with the given
framework has been demonstrated by specifying a composition of ReBaC2
and AODVlight. The resulting hierarchical hybrid routing scheme has been
simulated, and its functionality has been observed in the simulation results.
The advantage of the presented hierarchical routing scheme is that by simpli-
fying the view on the network structure for both schemes involved, bandwidth
and memory consumption can be reduced in comparison to a flat-routed
scheme. As it is based on two algorithms that are suitable for node mobility,
the resulting scheme offers good prospects to be suitable for use in highly
mobile environments.

5.2. Outlook 68

5.2 Outlook

Although the basic usability of the composed routing scheme has been shown,
there are several points that need improvement before it can be used in
productive environments.

5.2.1 ReBaC2

This subsection deals with the possible improvements regarding the cluster
structure, cluster formation behaviour, and metrics definition of the cluster-
ing algorithm ReBaC2.

5.2.1.1 Intra-Cluster Links

The paths within the clusters constructed by ReBaC2 are not optimal. Cur-
rently, there is no check to make sure that the link structure within a cluster
is sensible with respect to the reachability of nodes. A node may be linked
to an indirect parent node via other nodes despite the fact that it is directly
reachable by this parent node.

To counter this problem, a node should be able to change its location in
the cluster tree. For example, a node that is linked to the cluster head via
another intermediate node may overhear a message directly coming from the
cluster head. Based on this observation, the node should be able to switch
over to being directly connected to the cluster head. In another case, a
node overhearing another cluster member which is closer to the cluster head
than the node’s parent should be able to switch to the closer node as new
parent, thereby shortening its path to its cluster head. If all nodes have
these capabilities, the resulting tree will tend to have fewer hops between the
cluster head and its nodes, and the nodes will tend to have a higher number
of direct children.

5.2.1.2 Cluster Splitting

Clusters currently have the capability to merge, but they do only have the
possibility to split up into separate clusters in case of link loss due to topology
change. An explicit cluster split functionality can be useful in cases where a
cluster has become too big or is otherwise not optimal anymore. Even if it
is not for its size, a cluster can be split up, for example if it can be expected
that the resulting cluster fragments can merge with different neighbouring
clusters to form a structure that is better according to the specified metrics.

5.2. Outlook 69

This could be implemented by each subtree evaluating its possible other
cluster memberships concurrently to its current membership. Each node
could periodically send a cluster join request to other clusters in its direct
neighbourhood. The replies from the other clusters could be evaluated and
compared to the current situation in the current cluster, and if a significant
improvement is to be expected, the node could decide to change its cluster
membership, taking its subtree with it.

5.2.1.3 Metrics

More, different metrics can be devised, and the metrics can be evaluated
more elaborately. Currently, simple metrics have been used to show the
feasibility of the exchangeable metrics concept. When the clustering and
routing schemes are used in particular application contexts, adequate metrics
can be chosen and care can be taken to evaluate the metrics in a way that is
beneficial to the needs of the specific application.

This can be done by analysing the properties of the traffic that the application
generates, and finding metrics and criteria that cause the given algorithm to
generate a network structure suitable for an efficient handling of the applica-
tion traffic. Testing the devised metrics together with the actual application
is advisable in order to be able to further adapt and improve the metrics and
criteria.

5.2.2 Routing

The resulting composed routing scheme also needs further improvement be-
cause the paths that are used by application data messages are not optimal.
This is primarily a result of the hierarchical structure of the network. The
messages are delivered from one cluster head to another cluster head via the
gateway nodes that are known between these two clusters. As the path in-
formation from source to destination is split up into legs from cluster head
to cluster head, the resulting path is not at all optimal. For example, a situ-
ation may occur where a message traverses the same node twice, first on the
way from the source to its cluster head, then on the way from the cluster
head to the appropriate gateway node of the cluster. A similar situation may
occur when a message is delivered from one gateway node towards a cluster
head and then from the cluster head to another gateway node. If these two
gateway nodes are in a common subtree of the cluster, the nodes connecting
the common subtree with the cluster head are traversed twice.

5.2. Outlook 70

A solution to this problem could be to introduce route update messages
that are generated at a node that is traversed twice and that are used to
shorten the path by the unnecessary nodes. For example, such a route update
message could be sent to the node of this cluster that received the message
first. This node could use this extra information to deviate from the standard
behaviour of forwarding all messages to the cluster head. It could directly
address the message towards the outgoing gateway of the cluster, leaving
out the nodes that have been passed twice before. Such a route update is
only useful for consecutive messages between the same source and destination
nodes, as the first message will have to use the strictly hierarchical route in
order to discover that some nodes are used twice.

Another solution to this problem would be to use the information gathered
by ReBaC2 more efficiently. When a node is a gateway, all of its direct and
indirect parent nodes gain knowledge about its gateway status, because this
information is aggregated and sent towards the cluster head. This informa-
tion is currently only used for informing the cluster head about gateways in
the cluster. If this information is also used for routing decisions in the nodes,
a data message does not have to be sent towards the cluster head if the des-
tination of the message lies within the subtree of the current node. A node
can directly forward the message into the subtree that contains the destina-
tion node or gateway, and the detour via the cluster head is not necessary
anymore.

Bibliography

[Bas99] S. Basagni. Distributed clustering for ad hoc networks. In Pro-
ceedings of the IEEE International Symposium on Parallel Ar-
chitectures, Algorithms, and Networks (I-SPAN), pages 310–315,
Perth, Western Australia, June 1999.

[BFE84] D. J. Baker, J. A. Flynn, and A. Ephremides. The design and
simulation of a mobile radio network with distributed control.
IEEE Journal on Selected Areas in Communications, 2:226–237,
January 1984.

[BR02] Elizabeth M. Belding-Royer. Hierarchical routing in ad hoc mo-
bile networks. Wireless Communications and Mobile Computing
2002, 2:515–532, 2002.

[FGG07] Imgmar Fliege, Alexander Geraldy, and Reinhard Gotzhein. Mi-
cro protocol based design of routing protocols for ad-hoc net-
works, 2007.

[FGW06] Ingmar Fliege, Rüdiger Grammes, and Christian Weber. Con-
TraST – a configurable SDL transpiler and runtime environment.
In R. Gotzhein and R. Reed, editors, System Analysis and Mod-
eling: Language Profiles, volume 4320 of Lecture Notes in Com-
puter Science, pages 216–228. Springer Berlin / Heidelberg, 2006.

[Haa97] Zygmunt J. Haas. A new routing protocol for the reconfig-
urable wireless networks. In Proceedings of the 6th IEEE In-
ternational Conference on Universal Personal Communications
(ICUPC ’97), volume 2, pages 562–566, San Diego, CA, USA,
October 1997.

[Hei07] Christoph Heidinger. Clustering in mobile ad hoc networks. Pro-
jektarbeit, Technische Universität Kaiserslautern, Oct 2007.

Bibliography 72

[HT98] Ting-Chao Hou and Tzu-Jane Tsai. Adaptive clustering in a hi-
erarchical ad hoc network. In Proceedings of International Com-
puter Symposium, pages 171–176, Dec. 1998.

[HT01] Ting-Chao Hou and Tzu-Jane Tsai. An access-based clustering
protocol for multihop wireless ad hoc networks. IEEE Journal on
Selected Areas in Communications, 19(7):1201–1210, July 2001.

[JC03] Tomas Johansson and Lenka Carr-Motyčková. On clustering in
ad hoc networks. In Proceedings of the Swedish National Com-
puter Networking Workshop, August 2003.

[KGGR05] Thomas Kuhn, Alexander Geraldy, Reinhard Gotzhein, and Flo-
rian Rothländer. ns+SDL – the network simulator for SDL sys-
tems. In A. Prinz, R. Reed, and J. Reed, editors, SDL 2005:
Model Driven Systems Design, volume 3530 of Lecture Notes in
Computer Science, pages 103–116. Springer Berlin / Heidelberg,
2005.

[MZ99] A. McDonald and T. Znati. A mobility-based framework for
adaptive clustering in wireless ad hoc networks. Wireless Ad Hoc
Networks. IEEE JSAC, August 1999.

[ns2] The Network Simulator – ns-2, Information Sciences Institute,
University of Southern California.
http://nsnam.isi.edu/nsnam/index.php.

[PB94] Charles Perkins and Pravin Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV) for mobile
computers. In ACM SIGCOMM’94 Conference on Communica-
tions Architectures, Protocols and Applications, pages 234–244,
1994.

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand
distance vector routing. In Proceedings of the Second IEEE Work-
shop on Mobile Computing Systems and Applications (WMCSA
’99), pages 90–100, New Orleans, LA, USA, Feb 1999.

[SGLA08] M. Spohn and J. Garcia-Luna-Aceves. Improving the efficiency
and reliability of the route discovery process in on-demand rout-
ing protocols, 2008.

Bibliography 73

[SH02] Ahmed Safwat and Hossam Hassanein. Infrastructure-based
routing in wireless mobile ad hoc networks. Computer Commu-
nications, 25(3):210–224, February 2002.

[SM02] J. Sucec and I. Marsic. Clustering overhead for hierarchical rout-
ing in mobile wireless networks. INFOCOM, pages 202–209, June
2002.

[SM04] John Sucec and Ivan Marsic. Hierarchical routing overhead in
mobile ad hoc networks, 2004.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall In-
ternational, Inc., third edition, 1996.

[tau] Telelogic Tau 4.6.4, Telelogic.
http://www.telelogic.com/products/tau/index.cfm.

[WNST01] Shih-Lin Wu, Sze-Yao Ni, Jang-Ping Sheu, and Yu-Chee Tseng.
Route maintenance in a wireless mobile ad hoc network. Telecom-
munication Systems, 18(1-3):61–84, 2001.

	Introduction
	Background
	Survey of Routing Schemes
	AODV
	AODVlight
	DSDV
	ZRP
	ARC

	ReBaC in Its First Version
	Changes in ReBaC2
	Metrics
	Cluster Join Criteria
	Alive Messages
	Routing

	Repair Based Clustering Algorithm 2 (ReBaC2)
	Introduction
	Message Scenarios of ReBaC2
	Interaction in Special Cases

	SDL Design of ReBaC2
	SDL Block Structure
	Behaviour
	Process ControlServices

	Metrics
	Data Structures
	Operators
	Examples

	Properties
	Partitioning
	Convergence

	Cluster Based Routing
	Introduction
	Routing Framework
	Division of Activities
	Choice of Routing Mechanism
	Coordination of ReBaC2 and AODVlight
	Behaviour of AODVlight
	Routing Query Processing by ReBaC2

	Collaboration
	Conclusion

	Simulations
	Conclusion and Outlook
	Conclusion
	Outlook
	ReBaC2
	Routing

