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Abstract  

This report describes our ongoing work of creating a runtime platform for SDL systems on 
resource limited platforms. It mainly focuses the connection of generated SDL systems with a 
generic environment through the SDL Environment Framework for micro controllers, called 
µSEnF. The µSEnF enables SDL systems to communicate through a mostly hardware 
independent interface with the native hardware. This approach keeps the SDL systems 
portable, since no hardware dependent functions are contained within the SDL systems. It also 
keeps µSEnF portable, since its interaction points with generated SDL systems and operating 
systems are well defined. This way, only relevant parts of µSEnF must be changed when it is 
ported to another runtime platform, or when it should be used with a different code generator. 
Additionally, this report presents our first experiences on creating code for the MicaZ motes 
from crossbow, a platform that is used for very small applications within the domain of 
ambient intelligence and sensor networks.  



1. Introduction 

1.1. Motivation 

Embedded systems become more important every day, so also the software that is running on 
these systems becomes more important. Especially in the still young domain of Ambient 
Intelligence Systems [AHS02], hardware platforms are expected to become smaller and more 
energy efficient, yielding in platforms with severe resource limitations. Since the costs of 
software systems currently are mainly controlled by money spent for maintenance, 
reengineering and debugging – also caused by the lack of available documentation – new 
methodologies have to be defined for developing software. One of these methodologies is the 
model driven development process. There are many methodologies how model driven 
development can be implemented in a specific domain, one possibility is the model driven 
development process with SDL that has been described in [FG05a].  

This report presents our current work of creating and implementing a runtime platform for 
SDL systems on resource-limited platforms. Our runtime platform enables the usage of our 
model driven development process even on platforms with only very scarce resources. Model 
driven development on these platforms is a challenging task because applications are created 
with a theoretical model in mind, generally based on finite state machines. These models 
usually do not consider a limited amount of resources, for example for signal input queues. 
Mapping these theoretical models to resource limited hardware can cause the application to 
become unreliable because signals from one process to another one might be dropped. So 
there is a need not to only provide a runtime platform that is capable of executing models on 
these platforms, but also the reliable execution of these applications must be guaranteed. This 
includes hiding the limitations on queue size to the user or at least to provide methodologies 
to overcome this problem. 

This report presents the current state of our work to implement an execution platform for SDL 
systems, and a first evaluation of the possibilities with this approach as well as the further 
work that has to be done in this area. 

1.2. Domain description 

In the embedded systems domain, especially when considering Ambient Intelligence systems, 
multiple specific requirements have to be considered. These are limited processing and 
memory resources, very limited energy resources – both constraints make the code generation 
and the generation of a runtime platform to execute this code for these Platforms a very 
challenging Task. Also real-time and reliability aspects have to be considered. These systems 
are usually expected to react reliably to a given situation within a defined period of time. 

1.3. Our goals 

For being able to perform model driven development on any platform, a runtime engine for 
executing these models has to be implemented. This is a challenging task, because the 
targeted hardware provides only very scarce resources. Also the domain specific requirements 
like reliability and the real-time abilities have to be considered. So our detailed goals for this 
ongoing work are the following: 

• Execute SDL systems on resource limited ambient network nodes: 



Provide a platform for executing SDL systems on resource limited ambient network 
nodes. Evaluate possible code generators, possible operating systems, whether automatic 
code generation is possible and the efficiency of the generated code. Also possible 
scheduling and memory management strategies should be evaluated and eventually be 
integrated into the SDL platform if necessary. 

• Provide a generic hardware interface to common hardware on these nodes: 
Identify necessary hardware that are common to all ambient network nodes and provide a 
methodology for integrating new hardware into the platform in a documented manner.  

• Evaluate the necessary partitioning: 
Ideally, all of the intelligence of the communication system should be implemented in 
SDL while the more generic tasks may be performed in the operating system, if the SDL 
platform is not accurate or fast enough to accomplish these tasks. Therefore, necessary 
interfaces are to be developed, based on experience from other projects, or based on 
literature studies. 

• Evaluate the timing characteristics: 
The timing characteristics of the platform should be evaluated including scheduling delay 
and the jitter that must be calculated for receiving signals or timers. Achievable timing 
capabilities of such a platform need to be evaluated. We expect that some predictable 
timing characteristics can be achieved when performing a more tight integration of the 
SDL virtual machine with the used operating system as it is done in this work. 

• Evaluate the achievable reliability: 
The platform to be developed must be reliable - also with respect to the limited memory 
resources and specific properties of the SDL language. Therefore, workarounds for the 
theoretical model of infinite SDL queues must be developed to keep the behavior of the 
system predictable – even under conditions with high signal load. 

• Integrate into development- and simulation process: 
There should be a possibility to integrate the platform into our model-driven development- 
and simulation process. 

1.4. Scope of this report 

This is a report describing our work in progress. Currently, we have a platform capable of 
executing SDL systems on MicaZ motes, using an Atmel ATMega128L micro controller. We 
consider this platform as a first step in the direction of generating code from SDL systems, 
because the integration of the SDL system, mainly the scheduling of transitions and the 
realization of timers on the micro controller hardware is still very basic. This report presents 
the current state of our work, the basic structure of our runtime platform, its capabilities and 
an outlook on our future work plans with SDL systems on micro controllers. 

1.5. Related work 

There has been already some effort of integrating SDL code in embedded systems, either by 
integrating existing code generators with real-time operating systems, or by providing manual 
transformation schemes. This section will briefly survey the existing work in this area. 

• Real-Time developer studio [Pra] is an implementation of SDL-RT [SDLRT], an 
extension of the SDL language for real time purposes. Some of the operating systems 



supported by the Real-Time developer studio are capable of being executed on resource 
limited nodes like the MicaZ platform.  

• [DRDK04] proposes the use of manual transformation patterns for transforming SDL 
systems into native code for TinyOS [HSWHCP00]. 

• Telelogics SDL Suite [Tel] offers code generation facilities for a variety of platforms 
supported by different code generators. While the CAdvanced code generator aims at 
generating code for larger embedded platforms like PC-Style hardware or XScale 
architectures, the CMicro code generator generates code for executing on resource limited 
platforms. Different types of integrations with the operating system are available and can 
be manually adapted. 

• Contrast is a new SDL runtime environment that is developed at the University of 
Kaiserslautern. Although it looks very promising, it is currently far away of being usable 
on resource limited node platforms due to its memory requirements.  

• Cinderella SDL [Cin] with the available code generators Cinderella SITE and Cinderella 
SLIPPER is capable of generating C++ code (if using SITE) or C code (if using 
SLIPPER). From the available information, it seems that the generated code from 
SLIPPER is not tightly integrated with operating systems, but provides a portable SDL 
virtual machine written entirely in C. 

• The SDL operating system “Reflex”, developed at the Agder University College as a 
master thesis [WT04], is an entirely new SDL runtime environment, for which currently is 
no compiler available yet. The kernel offers the necessary features for mapping most SDL 
constructs to native functions of the operating system. 

• In [DSH99], the possibility of generating VHDL specifications and C code out of SDL 
specifications is presented. It is shown, that time critical parts of SDL systems can 
eventually be implemented in hardware – directly generated from SDL specifications if 
software solutions are not efficient enough. Unfortunately, a performance analysis of the 
generated systems is missing in the paper. 

• In [DZM01], the CAdvanced code generator of Telelogic TAU was used for generating 
code from a SDL specification. A tight integration with the Virtuoso RTOS was 
performed. Unfortunately, as with [DSH99], the timing characteristics of the resulting 
system were not published in the paper. 

• In [ADLPT99] proposes the use of real-time temporal logic for integrating non-functional 
aspects like timing into a SDL system. A new, predictable, execution model is proposed 
which should enable the developers of performing analysis of their specifications. The 
timing behavior prediction is based on mapping the SDL specification to a transition 
graph, and performing a schedulability analysis afterwards.  

 
Although some of the works mentioned above use real-time operating systems, no platform is 
capable of guaranteeing maximum delay and jitter values for response times and timers. 
Depending on the system load it might be possible that those guarantees are beyond reach for 
all processes. However, our goal is to offer predictable timing to at least a subset of SDL 
processes under specific conditions. A SDL system could consist then of a set of time critical 
processes and of a set of ordinary SDL processes. 

Another important fact that also did rise during the first experiments with our runtime 
platform is its reliability. Especially when interfacing to communication hardware using a 
very low level interface, it is possible that message queues become filled. Then, some signals 
must be dropped – possibly resulting in unexpected behavior of the SDL system. This 
problem must also be investigated when developing a runtime platform for the ambient 
intelligence domain. 



1.6. Structure of this work 

The following sections are structured as following: Section 2 describes the requirements that 
have been identified for the runtime platform. Section 3 documents the design of the runtime 
platform, Section 4 highlights implementation details. In Section 5, the platform is evaluated. 
Section 6 summarizes conclusions and Section 7 points out further research areas. 

2. Requirements and challenges 

In this section, the specific requirements to a runtime platform for SDL systems in the context 
of ambient intelligence systems are evaluated. Ambient network nodes usually are equipped 
with low-power hardware. This includes a micro controller, some communication hardware, 
interfaces to sensors or general purpose I/O and eventually wireless communication hardware. 
Since our domain is the development of communication protocols for wireless Ad-Hoc 
networks, we did only consider sensor network hardware that is equipped with a transceiver 
chip for wireless communication. 

2.1. Survey on available platforms 

In the sensor network and in the ambient intelligence domain, mainly two platforms are 
available for research: 

• The particles developed at the University of Karlsruhe: 
The particle computers, developed by the University of Karlsruhe are a quite new sensor 
network platform. The nodes are equipped with PIC micro controllers, interfaces for 
sensor hardware, serial data storage and a chip that provides a unique serial id. The used 
processor is a PIC18F6720 with 128 Kbytes of flash-ram for program code and 4 
Kilobytes memory for data. Unfortunately, there are currently no nodes available for 
buying that contain the CC2420 transceiver chip – a chip that would provide a 802.15.4 
compatible physical layer. Although such a particle is planned, it is not yet available. 
Also, there is not much documentation on the used operating system available. 

• The Mica motes created by the University of Berkley: 
The Mica family is equipped with Atmel ATMega micro controllers, transceiver 
hardware, two RS232 ports and interfaces for sensor hardware. Furthermore, like on the 
particles, serial data storage is available and every node contains a chip with a unique ID. 
The Atmel ATMega128L has 128Kbytes flash-ram and 4Kbytes of data ram, so 
generating code for this platform from specifications will be a challenging task. The Mica 
nodes are operated using TinyOS; an operating system designed for very small devices 
and can be programmed by using the Gnu C Compiler or by using nc, an extension of the 
C language for resource limited platforms. It should be noted that also the Mica motes 
exist in multiple versions – we decided to use the newest MicaZ motes that are equipped 
with an 802.15.4 compatible transceiver chip – the CC2420. Since the CC2420 only 
provides the physical interface, it is possible to specify the Mac layer entirely in software, 
which is an excellent base for our research plans. 

These two platforms are the platforms, that are most commonly used in research and industry. 
Because of availability issues and because of the available open operating system, we decided 
to favour the MicaZ nodes for the development of our SDL runtime environment. The 
CC2420 transceiver chip offers an 802.15.4 compatible physical layer which is a promising 



technology in the emerging research area of sensor networks. Furthermore, the processors 
used on the Mica platforms have more calculation power, so they qualified as an ideal 
platform for the first revision of our runtime system. 

2.2. Platform description 

Independent of the micro controller or the operating system that is being used, nearly all 
possible platforms for ambient intelligence networks have similarities. This is due to the fact 
that these nodes have to remain active over a long period of time and have only limited energy 
resources [HD02]. The following, specific limitations are common for nearly all mobile 
nodes: 

• Energy aware design: 
Since energy is the primary concern in ambient intelligence networks, all available 
platforms use micro-controllers of some sort. Apart from having only scarce resources in 
terms of memory or computation power, these micro controllers often also do not offer 
features that would be expected from a mainstream processor like separated addressing 
spaces, multi tasking or a memory management unit. Another similarity among all micro 
controller platforms is the very limited size of available data ram. Possible scheduling and 
memory management strategies have to be evaluated to ensure that SDL systems run 
reliable on these platforms. 

• Communication hardware: 
Unlike pc platforms, nodes for embedded ambient intelligence networks usually provide a 
very low-level and time critical interface to the communication hardware. It must be 
evaluated which parts of the interface to the communication hardware have to be written 
in native code, and to which extend, the intelligence can be kept within the SDL system.  

• Operating system: 
The operating systems used on these platforms are usually very basic, optimized for low 
memory and processing power consumption. Normally, they provide implementations of 
cooperative or even preemptive scheduling and message based communication. Time 
slices are not common in this domain, due to the unpredictability of task interruptions. 
The offered features of these operating systems range from simple runtime libraries to 
systems that allow multi tasking. Normally the operating system is directly linked against 
the application that is being executed, so there is only one application running on a 
ambient intelligence network node.  

2.3. Available code generators 

We did evaluate two possibilities further for transforming SDL systems into native code: The 
CMicro code generator that ships with Telelogic TAU [Tel] and a set of manual 
transformation rules for transforming SDL specifications into TinyOS compatible code 
[DRDK04]. Because Telelogic TAU is already integrated in our development process and 
because of the possibility of integrating the generated code into our ns+SDL simulator 
[KGGR05], we did choose the CMicro code generator for the first iteration. This code 
generator allows different integration types for integrating the generated SDL system into an 
operating system. To achieve first results, we did choose to use the bare integration offered by 
the CMicro compiler of Telelogic TAU. It provides a very loose coupling of the SDL system 
with the operating system. For the first revision of our runtime platform this was sufficient, 
because this integration methodology is very simple, as it only required a very loose coupling 
between the generated SDL System and the runtime platform. Although the CMicro code 



generator does not support all SDL language features, like the priority input symbol, it 
provides a very special extension called signal priorities. This enables the developer to specify 
a global order that should be used when processing signals. 

3. Requirements 

We first identified the necessary functionalities and did a first test, whether integration with 
TinyOS could be successful. After the first promising results, we defined the requirements for 
the platform in terms of required services.  

3.1.1. 

3.1.2. 

3.1.3. 

Functional requirements concerning hardware drivers 

There are basically two methodologies for connecting hardware to SDL systems: 

• Synchronous access by using blocking procedure calls – they block, depending on the 
used scheduler, at least the SDL process that issued the procedure call. 

• Signal based access by sending signals to the environment. This is an asynchronous 
interface, because the signals are (at least virtually) processed concurrently to the running 
SDL system. 

 
The following requirements have been defined, based on our experiences with the BicMon 
project and based on the requirements of a SDL specified media access control component: 

• Compatibility to the SDL Environment Framework [FG05b] if possible. As a long term 
goal, all platforms should provide the same interface to the supported devices to SDL 
systems. 

• Signal based access to the radio communication hardware. This should be a low level 
interface to facilitate the creation of MAC layers in SDL. 

• Signal based access to the available serial (RS232) communication ports for 
communicating with local hardware like integrated sensor boards. 

• Signal based and synchronous access to the available light emitting diodes for signaling 
and debugging purposes 

• Signal based access to a unique ID that may either be provided by hardware, or that may 
be set during uploading the software on the microcontroller. 

• Signal based access to the analog/digital converters 
• Signal based access to the general purpose digital I/O pins 
 

Additional functional requirements to the runtime platform 

The following requirements were identified during our work on the BicMon demonstrator and 
are usable to a variety of possible SDL systems: 

• Synchronous access to a random number generator 
• Synchronous access to an interface for reading configurations 
• Synchronous access to an interface for sending logging messages to the environment – 

probably by using one of the serial ports. 
 

Non functional requirements to the runtime platform 



Besides of the functional requirements, numerous non functional requirements have been 
defined for the SDL platform: 

• Memory management paradigm: 
Dynamic memory should not been used, because of its unpredictability. It might be 
possible to allocate statically a small portion of the available memory for abstract data 
types or transmission buffers. This memory may not affect the other partitions, for 
example the SDL queue and the software platform must be able to handle out of memory 
situations correctly.  

• Reliability issues: 
The platform must be reliable, so no unexpected behavior may occur. This is more deeply 
explained in Section 6.3. 

• Portability: 
The platform should be portable to other SDL Kernels and code generators as well as to 
different hardware platforms. Also, the environmental interface that is offered to the SDL 
system should be as generic as possible. This should support a large range of different 
SDL systems without having to adapt the runtime platform. 

 

4. Design 

This section describes the main design rationale of our runtime platform. All relevant 
components are described as well as µSEnF, the SDL environment interface that is used to 
connect the generated SDL systems to the hardware. 

4.1. Notation 

The following notation is used for specifying the structure of the SDL runtime platform: 
Components with defined interfaces are connected by arrows. These interfaces are called 
interfacing points. There are mainly two types of interfacing points: Interfacing points that are 
connected with incoming arrows and interfacing points that are connected only to outgoing 
arrows. Interfacing points connected by incoming arrows are used by other components; these 
interfacing points are mapped to functions with defined names. These functions make up the 
exposed interface of a component. Interfacing points without incoming arrows are not called 
by external components – these interfacing points are normally represented by ordinary 
function calls in the source code. 

4.2. Static structure 

Because of the large number of possible configurations of a sensor node when considering the 
used SDL code generator, the used native operating system and the used hardware, a strict 
separation in independent layers with defined interfaces, called interfacing points became 
necessary to fulfill the portability requirement. Figure 1 illustrates the identified components 
and their relationships. 



 
Figure 1: Static structure and dependencies of our SDL runtime platform 
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Figure 1 shows all components that are required for executing a SDL system on a resource 
limited platform as well as their dependencies and interfacing points. The components are 
drawn as squares while the dependencies are indicated by arrows, where the arrowheads show 
the direction of the dependency. Two types of components are distinguished in the diagram: 
Of the shelf components and components that can be modified.  

Of the shelf components provide usually a more or less fixed interface. Two of these 
components have been identified: The SDL Kernel that depends on the used code generator or 
on the used transformation method and the native operating system that usually depends on 
the used hardware platform.  



Modifiable components can be separated into those components that make up the runtime 
platforms, and into the SDL system that is to be executed. Of course, the runtime platform 
should be re-usable for multiple SDL systems, so the interface between SDL and its 
environment must be a generic one. The components that make up the runtime serve two 
purposes: They provide necessary functionality for executing these SDL systems, but they 
provide also glue code that maps the functionalities of the of-the-shelf components, that they 
depend on, to a more generic interface. As a result, two larger blocks can be identified:  

• The generated SDL system 
• The native interface 

 
These blocks encapsulate their functionalities in generic interfaces; these are drawn as generic 
interfacing points – generic interfacing points mark blocks that can be exchanged. These are 
the native interface, the generated SDL system – and because the dependency of the SDL 
system with the used SDL Kernel is a special one, that is resolved by the compiler or the used 
transformation method, the SDL system itself. For example, the hardware abstraction layer 
can be kept when the used SDL Kernel – and as a result of this, also the implementation of the 
depending µSEnF is changed. This could be the case when moving from CMicro bare 
integration to CMicro tight integration. Depending on the similarities of the platforms, the 
code may partially be kept though. This makes this platform quite powerful, because it 
enables the developers to quickly bootstrap SDL systems on an existing platform, without 
having to worry about accessing platform specific hardware. The functionalities of these 
blocks is implemented in the components that it is made up of – these components are 
described in more detail in the following paragraph. They are separated into components that 
were created as a part of this work, into 3rd party components that were used out-of-the box 
and into those components that have to be specified by the protocol developer: 

Created components: 

• SDL SEnF drivers: 
These drivers make up the communication endpoint between the micro controller 
specific SDL Environment Interface µSEnF and the SDL system. They are 
implemented as SDL processes with defined names, which are addressed by the SDL 
environment when sending signals into the SDL system. They are also an abstraction 
layer between the SDL system and the concrete device that is used, allowing to 
quickly changing the used driver without having to rename signals in the SDL system. 
The interfacing points between the SDL SEnF drivers and the µSEnF are defined by 
every driver, for the SDL drivers this is a set of incoming and outgoing signals. The 
realization of the interface to C depends mainly on the used transformation method – 
and as a result, on the used SDL Kernel. 

• The micro controller specific SDL Environment Interface (µSEnF): 
This component implements the environmental interface of the SDL system. This 
interface strongly depends on the used code generator - µSEnF in its current 
implementation is compatible to the CMicro code generator of Telelogic TAU. The 
µSEnF strongly depends on the SDL Kernel that has usually no standard interface – so 
µSEnF has to be re-implemented – at least partially – for every SDL Kernel that is to 
be used. In this component, also the methodology of sending signals into SDL is 
defined. Either the signals are stored at reception until they are polled, or they are sent 
asynchronously into the SDL system. The implementation of the interfacing points to 
the SDL drivers depend on the methodologies for sending signals to- and for receiving 
signals from SDL, that are offered by the SDL system. The interfacing points to the 



hardware abstraction layer are realized as an ordinary interface of C functions – there 
is a set of functions defined for every device driver in the HAL for sending 
notifications, and also a set of callback functions in µSEnF for receiving notifications 
from the hardware. The µSEnF must also implement functions that are required by the 
generated SDL system to be able to execute – so the concrete implementation of 
µSEnF also depends on the used code generator. 

• The Hardware Abstraction Layer: 
The Hardware Abstraction Layer serves as a defined interface between µSEnF and the 
hardware or the native operating system. While the interface to µSEnF is fixed, the 
interface to the native operating system strongly depends on the used operating 
system. Required functions that are not available though the operating system, have to 
be provided by the implementation of the HAL. 

Components that have been used out-of-the box: 

• SDL Kernel: 
This component relies on the used transformation method and is either part of the 
transformation framework, or of the used compiler. The coupling between this 
component and the SDL system is a very specific one, because this component 
provides the runtime library for SDL and the implementation of all SDL primitives. It 
also defines the interface that SDL uses to communicate with its environment, 
resulting in the need of a matching µSEnF component. 

• The native operating system: 
Depending on the type of the native operating system, it might only provide some 
functions for accessing the hardware, or a more complex interface, providing also 
higher level operating system functionalities. The Hardware Abstraction Layer 
depends at least partially on the native operating system. 

Components that have to be specified by the protocol developer: 

• SDL Functionality: 
This is the SDL system that was specified by the protocol developer. It contains the 
functionality that is specific to this system as well as a set of SDL SEnF drivers. This 
SDL system is transformed by the used transformation method into native code. This 
component does not belong to the runtime platform being generated, but represents the 
functionality of the SDL system that is to be specified by the developer. The resulting 
SDL system contains this functionality, in any representation that the developer might 
choose.  

The following sections give a more detailed overview on the components that were created as 
a part of this work.  

4.3. SDL SEnF Driver 

The SDL SEnF Drivers are a part of µSEnF. They use SDL signals to communicate with 
µSEnF by using the available input, and output functions for receiving signals from the 
environment and for sending signals to the environment. Mainly, they serve two purposes: 

• Providing an abstraction layer between SDL and the real hardware 
• Providing a communication endpoint 



• Provide synchronous functionality 
 
The abstraction layer provided by these drivers comes handy, when the used hardware is to be 
changed. For example, a set of SDL SEnF Drivers offer a generic serial interface to SDL, 
while to µSEnF, either specific signals for UART or Bluetooth communication are used. So 
the interface to SDL is specified by the offered functionality of the driver, in the example 
above serial communication, while the interface to µSEnF is specified by the concrete 
hardware that is used for providing this functionality. This enables the developer to quickly 
change the used hardware without having to worry about renaming signals in his SDL 
specification.  

Another important role of the SEnF Drivers is that they might provide synchronous 
functionalities realized as SDL procedures. These are functionalities that are not mapped to 
environmental signals, but to direct calls into µSEnF using native Code. Since the offered 
methodology of integrating native C code into SDL may vary between the available code 
generators, parts of the SDL SEnF Drivers implementation might be required to be adapted to 
a different compiler. 

4.4. SDL Environment Framework for micro controllers (µSEnF) 

The µSEnF provides the interface between the SDL system and its environment. Although it 
was a goal to keep µSEnF compatible to the SDL Environment Framework SEnF that is used 
on platforms with more resources some changes became necessary. These changes are 
documented in Section 4.4.1 below. 

The implementation on µSEnF depends on the used code generator, and on the used strategy 
for sending signals into the SDL system. We decided to asynchronously send incoming 
signals directly into the SDL system. Although this will not be a great benefit with respect to 
the achievable reaction time with our current bare integration, plans are to develop a runtime 
platform that is implemented by using a tight integration of the SDL system. This would 
allow us to directly affect the scheduling of the SDL system and to preempt SDL processes 
when necessary for achieving better response times. 

4.4.1. Interface changes to SEnF 

The data type used for representing data to be transmitted or received data was changed in 
µSEnF to respect the needs of resource constrained devices. The octet strings that are used by 
SEnF for sending or receiving data cannot be used with µSEnF for the following two reasons: 

• Octet strings require dynamic memory allocation: 
The behavior of octet strings, if there is not enough memory available is not defined. 

• Octet strings require deep copies of the signal data: 
If an octet string is to be sent to another process, a deep copy is made. Although this 
allows both processes to modify the data contained in the octet string, normally this is not 
necessary. Our experiences showed, that modifying a received packet, or packet that is to 
be sent, concurrently by multiple processes is rather uncommon.  

These two issues prevented the use of octet strings for us. So we decided to introduce a new 
data type SEnFPacket that acts like a pointer type in C. Every instance of this packet type has 
a fixed size and is allocated from a ring buffer, so the software has to be aware of the 
possibility of having no packet buffer available when it is requested. Our plans for the near 



future include supplying a set of SDL-patters that document the intended usage of this data 
type. Another necessary change was the representation of the time. On embedded devices, the 
time is usually measured in terms of ticks rather than using a real time clock. The duration of 
a tick – and therefore also the available timer resolution – strongly depends on the used 
hardware abstraction layer. A specific package has been added to µSEnF that cares about 
converting  

4.4.2. Interfacing SDL with the environment 

This section describes the current interfacing used for integrating SDL systems with the 
environment. Figure 2 shows the current structure of µSEnF. 

 
Figure 2: Structure of µSEnF 

HAL 

SDL 

µSEnF 

xInEnvxOutEnv

hal_xxx 

hal_xxx 

As indicated in Figure 2, several functions are used by µSEnF for communicating with the 
SDL system. The function xOutEnv manages the outgoing signals. Outgoing signals are 
directly mapped onto the Hardware Abstraction Layer, without any buffering. Callback 
functions are used to transmit incoming signals to the SDL system. The used code generator 
generates one queue that is shared by all SDL processes, and which contains all signals that 
are currently en route. If signal priorities are used, which is a proprietary extension of 
Telelogic TAU, the signals are sorted accordingly when they are inserted into the SDL queue. 
Afterwards, SDL starts processing the signal that is first in queue. Figure 3 illustrates this 
behavior. 



 
Figure 3: Queuing behavior of CMicro 
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As it can be seen, always the first signal of the signal queue is consumed. It can also be seen, 
that every signal already contains its receiver process. Due to this fact, every signal that is 
being sent into the SDL system from the environment must be addressed to a specific process. 
To keep the environment reusable, we decided to introduce the concept of the SDL Drivers 
that has been described above. Apart from providing functions for sending signals to the 
environment and receiving signals from the environment, µSEnF must also provide the 
interfacing points that are requested by the used SDL runtime. For the CMicro runtime using 
a bare integration, these interfacing points are described in Section 5.1.  

4.4.3. Error handling 

The µSEnF also contains error handling facilities. These error handling facilities usually catch 
unexpected situations, that can not be handled by SDL like signal drops due to full buffers or 
unspecified reception – although it is up to the view of the protocol designer whether this 
should be treated as error or not. Errors are reported by the supplied SDL Engine of Telelogic 
TAU. Currently, there are three strategies available to deal with errors: Ignoring them, this is 
suitable for expected and non critical errors like unspecified signal reception, to stop the 
whole system with an error message repeated to the serial port – this is especially useful while 
debugging or testing – or by issuing a complete reset of the network node to bring it back into 
a defined state – this is most common in production systems. 

4.5. Hardware abstraction layer 

The Hardware Abstraction Layer serves as a defined interface between µSEnF and the 
hardware or the native operating system. As indicated by the generic interfacing points, the 
interface to µSEnF is does not contain any operating system specific parts. The interface to 
the native operating system is not as generic and also strongly depends on the used operating 
system and its offered services. The HAL offers direct access to available devices on the 
micro controller like serial and radio communication. This component is an interface that 
maps the functionality of device drivers to the generic interface that is offered to the generated 
SDL system. 



The generic interface between the Hardware Abstraction Layer and the generated SDL system 
is realized by a set of functions with specific naming conventions. Since this is a bidirectional 
interface, both blocks have to offer a defined set of functions to make the linking possible. 
Signals from SDL to the hardware abstraction layer are mapped by to µSEnF calls into the 
implementation of the HAL; signals from the hardware abstraction layer are sent to µSEnF by 
using the post functions that are provided by the generic interface of µSEnF. The concrete 
interface that has been specified for the generic interfacing points of µSEnF and the HAL is 
documented in Section 5.2. 

5. Implementation  

As a first result, we did implement our SDL runtime platform and our SDL Engine on a 
MicaZ mode running TinyOS. Since we did use TAU CMicro to generate C code out of the 
SDL specifications, the Implementation of the SDL Engine is specific to CMicro. The 
following sections briefly describe highlights of the implementations. 

5.1. Bare integration of the TAU CMicro runtime 

The bare integration of the CMicro code generator from the Telelogic TAU SDL Suite 
requires only very few integration with the used operating system. This section describes how 
a bare integration, the integration used by the first revision of our platform, can be performed. 

5.1.1. Expected functions from the runtime system 

The following service primitives are required to be present in µSEnF for performing a bare 
integration: 

Timing related 

These functions are used to interface the SDL system with the current system time. 

• xmk_NOW() 
This function is called by SDL to request the current system time from the runtime 
environment. 

• xmk_InitSystime() 
This function is called once when starting the system; it can be used to initialize the 
necessary hardware registers. 

• xmk_SetTime() 
This function is called when the current system time should be set to a specific value. It 
might be called if the SDL system detects an overrun of the time. 

Memory related 

The following two functions must be present, even if no dynamic memory is being used by 
the SDL system due to the fact that the compiler cannot ensure that signal parameters will 
never grow too large for being handled by static memory allocation. Our runtime platform 
will issue an error, resulting in either a reset or a system stop if one of these functions is 
called. The used error handling depends on compile time settings. 



• xAlloc() 
This function is used to allocate a block of a specified size. 

• xFree() 
This function is used to free a memory block. 

Input and output of signals 

These functions are used by the SDL system for communicating with the environment. 

• xInEnv() 
This function is called by SDL to poll signals from the environment. 

• xOutEnv() 
This function is called every time a signal is sent from SDL into the environment. 

• xInitEnv() 
This function is called once upon the start of the system. It can be used to perform 
required initializations. 

Error Handling 

This function is called by SDL when something unexpected happened, for example a dropped 
signal due to a full signal queue. 

• ErrorHandler() 
This function is expected to handle an error. Depending on the actual error, it may be okay 
to return to the SDL system. 

Handling of critical paths 

These two macros have to be present to handle critical paths. They probably need to be 
integrated with the used native operating system. 

 

• XMK_BEGIN_CRITICAL_PATH 
Start a critical path. 

• XMK_END_CRITICAL_PATH 
End a critical path. 

5.1.2. Offered services to the runtime system 

The following main service primitives are offered for controlling the SDL system when using 
bare integration: 

• xmk_InitQueue() 
This function must be called before any other provided function is being called. It 
initializes the SDL queue. 

• xmk_InitSDL() 



This function is to be called before xmk_RunSDL should be called. It initializes the whole 
SDL system. 

• xmk_RunSDL() 
This function never returns. It runs the SDL system in an endless loop. 

• XMK_SEND_ENV() 
This function can be used to asynchronously post events into a running SDL system or to 
send signals synchronously to SDL from within the xInEnv function when SDL polls for 
new signals. 

5.2. Generic interfacing points between HAL and µSEnF 

This Section documents the services that are offered by the Hardware Abstraction Layer, 
sorted by their categories, and the services that are required to be offered by µSEnF. 
Depending on the offered services of the micro controller, not all of these interfaces have to 
be present in a concrete HAL. However, interfaces must be implemented completely, so if, for 
example, radio communication is supported, all services that belong to radio communication 
have to be implemented. 

5.2.1. 

5.2.2. 

Naming conventions for the interfacing points 

Functions of the hardware dependant interface are currently prefixed with ‘driver_<device>’. 
Events from the hardware are signaled by using callback functions. 

Radio communication  

Currently, there is support for the ChipCon CC2420 Radio Transceiver chip included in the 
hardware abstraction layer. During the work on our QoS MAC layer MacZ [KF05], the 
necessary primitives for a low level interface from SDL to the hardware have been identified. 
In concrete, the following interfacing points have been implemented for sending signals to the 
transceiver chip: 

• driver_CC2420_Setup(Channel: Integer, TxPower: Integer) 
This signal sets the channel that the transceiver chip will operate on as well as its 
transmission power for future transmissions. For the channel parameter the following 
constraint must hold: 10 < Channel < 27, for the TxPower parameter, the following must 
hold: 2 < TxPower < 32. 

• driver_CC2420_Mode(Mode: Integer) 
This signal sets the CC2420 to one of three operating modes: 

o Mode 0: Power down mode 
o Mode 1: Idle mode 
o Mode 2: RX mode 

 
The TX mode is automatically set when a transmission request is sent to the driver. 

• driver_CC2420_Send(Data: void*, Length: Integer) 
This sends the given data packet without checking the CCA pin prior to sending. Since 
pointers are not implemented in SDL, a special data type must be provided that 
encapsulates all necessary behavior.  



• driver_CC2420_SendCca(Data: void*, Length: Integer) 
This sends the given data packet with checking the CCA pin prior to sending. Depending 
on the state of the CCA pin, either the packet will be sent or an error message is returned 
immediately.  

The following interfacing points are expected by the HAL for signaling received events from 
the transceiver chip: 

• driver_CC2420_SFD(Success: Boolean) 
This signal is either received as a response to a send operation or while the transceiver 
chip is in RX mode. When the transceiver chip is in RX mode, the reception of this signal 
indicates the receiving of a valid preamble and start-of-frame delimiter, indicating the 
arrival of a new packet. When this signal is received as response to a send operation, the 
value “true” for the parameter indicates the end of a successful transmission – the value 
“false” is only returned as answer to CC2420_SEND_CCA and indicates a busy medium. 
Note that a value of true is not equivalent to a successful reception of the signal at any 
receiver node. 

• driver_CC2420_Sending(Success: Boolean) 
This signal is always sent to the SDL system as a response to CC2420_SEND, or as a 
response to CC2420_SEND_CCA if the medium was idle. It indicates the successful 
beginning of a send operation. The parameter is currently unused. 

• driver_CC2420_CCA(Idle: Boolean) 
This function is called for reporting the state of the medium. This signal is only issued 
when the state of the medium has changed or the runtime is unsure about the current 
media state – for example after transmitting some data. If Idle is true, then the medium is 
idle, otherwise it is busy. 

• driver_CC2420_Recv(Data: void*, Length: Integer, GoodCRC: 
Boolean, RxStrength: Integer) 
This signal indicates a completely received packet. The first two parameters must be 
encapsulated for SDL because pointer handling should be omitted. The third parameter 
indicates whether the CRC check was successful, the forth parameter indicate the strength 
of the received signal.  

5.2.3. Serial communication 

The following interfacing points are available to transmit signals from SDL system to the 
hardware abstraction layer. 

• driver_UART_Send(void * data, int length) 
This function sends a packet to the serial communication port with the number 1.  

• driver_UART_xSend(int port, void *data, int length) 
This function sends a data packet to the given serial port. The available port numbers start 
with 1. 

• driver_UART_Setup(int port, int baudRate) 
Calling this function sets up the serial communication for the given port number.  



The following interfacing points are expected by the Hardware Abstraction Layer to signal 
events to the SDL system. 

• driver_UART_Recv(int port, uint8 octet) 
This signal indicates the reception of an octet via the serial communication interface. 
Please note that this interface does not preserve message boundaries. The first parameter 
contains the port where the data was received from; the second parameter contains the 
received octet.  

5.2.4. 

5.2.5. 

5.2.6. 

5.2.7. 

Light emitting diodes 

The following interfacing point is available for controlling the light emitting diodes of the 
micro controller. 

• driver_LED_Set(int operation, int bitmask) 
This function changes the state of the available light emitting diodes by applying a logical 
operation and a bit mask to the current state of the lamps. The available operations are 
currently set, and, or and xor. 

Access to unique ID 

This interface has not been specified yet and is considered to be future work. 

Access to the analog/digital converters 

This interface has not been specified yet and is considered to be future work. 

Access to the digital general purpose I/O 

This interface has not been specified yet and is considered to be future work. 

6. Evaluation 

This section evaluates our current platform. The results presented here are preliminary, 
because the development of the runtime platform is still work in progress. Two criteria for the 
evaluation are separated: Timing issues and reliability issues. For being able to fully 
understand these issues, some specifics about SDL must be known. These specifics are 
described in the following section. 

6.1. SDL Model 

SDL assumes a theoretical model of communicating extended finite state machines that have 
infinite queues for storing incoming signals. In the model of SDL-96, these extended finite 
state machines are running concurrently. A running state machine executes a transition 
whenever it is triggered. Transitions may be triggered by the following events: 

• Received signals 
• Continuous signals 
• Spontaneous transitions 
• SDL timers 

 



Received signals are signals that have been sent to a specific process, either by another SDL 
process or by the environment. Upon reception of a signal, the associated transition is 
executed. 

Continuous signals cause a transition to fire every time the signaling queue of a process is 
empty. This construct should be avoided, because the order of scheduling SDL processes is 
not specified – so, depending on the used SDL Kernel it might happen that the process with 
the enabling condition will be the only running process. Since the scheduling order of the 
processes is not defined in the SDL standard [SDL100], it is not possible to avoid this case – 
whether this could happen or not depends on the used runtime environment. Therefore, this 
construct should be avoided when developing embedded systems – in the further work, 
continuous signals will not be considered when doing formal verifications. 

Spontaneous transitions may fire at any possible time. This is used to model behavior that has 
not been implemented or to specify indeterminism, for example when a medium with the 
ability to loose messages should be specified in SDL. In production systems, this construct 
should be omitted, so it will not be considered further. 

SDL timers may cause a transition to fire at a specific time. Unfortunately, only the minimum 
waiting time for a timer can be specified – it is up to the timer, and probably also depends on 
the implementation, whether it fires at this point of time or at any later time.  

Since all state machines are running concurrently in the theoretical model, they may also 
concurrently fire transitions and process signals or timers. When this behavior is mapped to a 
real hardware, two mappings are possible: 

• Preemptive scheduling 
• Non-preemptive scheduling 

 
When a preemptive scheduling is implemented, processes may interrupt each other when they 
receive a signal. In Telelogic TAU, this is combined with a priority mechanism, so that only 
lower priority processes will be interrupted. 

One interesting extension of Telelogic TAU is the ability to define signal priorities. Unlike the 
process priorities that have been mentioned above together with preemption, signal priorities 
may be used to associate signals with a specific priority. So the signals with higher priority 
will be inserted in the SDL queue before the signals with lower priority. This guarantees that 
higher priority signals will be processed before the lower priority signals. 

The following section will evaluate the timing constraints that hold for the current non-
preemptive implementation of our SDL runtime.  

6.2. Timing 

Two main areas can be spotted when considering timing issues in the embedded systems 
domain: 

• Required time for reacting on events 
• Timer accuracy 

 
For being able to predict the required time for reacting on events, it is assumed that signal 
priorities or a similar extension is being used, ensuring that the measured timer signal will 



receiver the highest priority. Further work will also consider the achievable timing accuracy 
for lower priority signals. 

6.2.1. Reaction time on events 

The concrete timing heavily depends on the used runtime platform, and on the used SDL 
kernel. The used hardware platform affects the timing by its timer accuracy and by the 
processing power of the used processor. A kernel that supports preemption can interrupt 
processes for higher priority signals, while a kernel that does not support this feature has to 
complete the execution of the currently running transition before the newly arrived event can 
be handled. So preemption usually results in a better response time to high priority signals. 
For being able to start processing an event after it arrived in the SDL system, the currently 
running transition must be completed and the new process has to be scheduled. For the case 
that that newly arrived signal has the highest possible priority, the following sources for 
relevant delay have been identified so far: 

• Time required for passing the event from hardware to SDL 
• Scheduling and dispatching of transitions 
• Execution time of transitions 

 
The following measurements show the time that is required for processing a signal from 
another SDL process, and the required time for processing a signal that was sent into the SDL 
system by the environment. 
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 Figure 4: Reaction time for signals from the Environment 

As it is shown by Figure 4, a SDL process requires an average time of 470 microseconds to 
react on a signal from the environment. The measurement was performed with a SDL system 
that is almost idle. The next figure shows the measurement results for signals from another 
SDL process. 
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Figure 5: Reaction time for signals from the Environment 

Figure 5 shows, that our SDL platform is faster when reacting to an internal event, but also 
that there is still a considerable delay and a jitter that is in the range of 20 microseconds. The 
measurement results show, that there is still room for improving the timing performance of 
our SDL runtime platform on MicaZ nodes. 

6.2.2. 

6.3.1. 

Timer accuracy 

Although SDL timers can currently not be set to fire within a defined period of time, the 
implementation usually does its best to fire the timers as accurate as possible. Although this is 
not yet sufficient for any real time scheduling, it might be a starting point. Since no 
preemption is currently used, the achievable timer accuracy heavily depends on the load of the 
SDL system. Improving the achievable timer accuracy is currently ongoing work. 

6.3. Reliability 

The reliability of a running SDL system is affected by the mapping from the theoretical SDL 
runtime model to a concrete platform. This is especially true for the mapping of the 
theoretically infinity sized signal queue to a size limited real queue. In the SDL model, every 
process has a signal queue that holds all signals addressed to him, that are waiting to be 
processed. Due to the limited size of these queues in reality, the problem of possibly full 
queues must be addressed. This problem becomes even more evident, if the amount of 
available memory is very small. To overcome the problem of a full message queue, the causes 
of this problem must be addressed, as well as possible methods for handling such an error 
must be evaluated. 

Causes for full queues 

The SDL signal queue has only a fixed size, which is in embedded devices usually relatively 
small. To understand the problem of full queues, the SDL model must be understood. In SDL, 
nearly every transition is triggered by an incoming signal or by a timer. The only exceptions 



to this rule are continuous signals and spontaneous transitions, which have been described 
above. Since both constructs should not be used in embedded systems, these are not 
considered further. When not considering these two exceptions, there are three possible 
situations, where signals might be added to the SDL queue, and possibly cause an overflow:  

• A running transition is sending a signal  
• A timer expired 
• A signal is sent from the environment to SDL 

 
6.3.2. Possible solution 

These situations have to be investigated more deeply in future. For coping the first situation 
an understanding of the SDL system is necessary, at least to a certain extend. Projections 
could be used to abstract from the functional behavior, by just considering the possibly sent 
and received signals by every process. With a more simplified view on the SDL system, 
possibly a methodology could be created for analyzing the behavior of the SDL system with 
respect to the signals that are created and consumed by its processes. It could eventually be 
proofed, that the maximum number of signals would not extend a certain value. This would be 
the maximum required queue size. 

Timing issues must also be considered when starting to create a model for determining the 
required size of the SDL queue. When a timer is set, it will fire a signal to the receiver process 
at the time that it expires or any timer later, but by no means any earlier. In the meantime, the 
SDL system is able to fire a certain amount of transitions. This can either reduce or increase 
the amount of signals in the SDL queue – so the worst case must be expected. Since every 
SDL timer can be in the SDL queue only once, according to the SDL standard [SDL100], it 
should be possible to model the amount of required signaling space. Eventually, projections 
can be used to identify timers that are never concurrent to each other, these timers could share 
one requested queue space then. 

Another issue that must be considered is the reception of signals from the environment. Since 
these signals can be completely indeterministic, we propose to extend the SDL semantics for 
environmental signals. A possible solution could be to limit the number of environmental 
signals that can be in the SDL queue. This limitation could be a global one, or it could be 
grouped by the type of signals – for example for one type of signals the most recent could be 
kept when the maximum amount of signals is reached, for another type the first signals could 
be kept while the newer ones would be dropped. Creating a framework for ensuring that 
queues do not overrun is current work in progress. 

7. Conclusions 

Our first platform did proof that it is possible to instantiate a model driven development 
process on resource limited platforms, like the MicaZ nodes. The developed runtime platform 
has a clear structure, with defined, extensible and light weight interfaces which encourages 
portability either to a different SDL Kernel or to a different hardware platform. The timing 
issues are still a problem that is worked on, since the model of the traditional SDL timers and 
SDL signals, maybe a modification is necessary to introduce deadlines – this would enable the 
SDL model to become capable of real-time processing. First effort in this direction was 
already taken, but further research in this area is necessary. This also holds for the reliability 
issues.  



8. Further work 

Since this is a report on work in progress, numerous work packages still remain open. The 
following paragraph lists the works that are currently ongoing or planned for the near future.  

The first issue is the abstract data types and their generators of SDL. These data types must be 
implemented on these resource limited platforms in a very efficient manner. Also a 
methodology should be implemented, to notify the SDL system when there is no more space 
left for storing more data.  

Another important point is the reliability of SDL specifications. This is an issue that requires 
further research. The possibility of creating a formal, static technique for analyzing a SDL 
system with respect to the possibility of queue overflows should be evaluated and such a 
technique eventually developed.  

Also the timing issues must be further investigated in future. Maybe the SDL scheduler can be 
adapted to support deadlines. [Kol00] did already integrate an earliest deadline first 
scheduling into a SDL scheduler. 

The possibilities of a tight integration, and also the pros and contras of using a preemption-
enabled kernel should be evaluated. The use of the SEnFPacket type should be documented, 
probably by specifying a micro protocol [FGGS05]. 

9. Definition of important terms 

This section lists and defines important terms that are used in this report. 

SDL System 

The SDL System is specified by the developer. It contains the functionality of the developed 
system. 

SDL Kernel 

The SDL Kernel ships with the used code generator or with the used transformation 
framework. The services that are contained in the SDL kernel may vary – together with the 
SDL environment all necessary functions must be provided to execute the generated or 
transformed SDL system. 

SDL Environment 

The SDL environment provides the connection of the SDL system to real hardware, or to 
other processes as well as necessary services, that are not implemented in the SDL kernel. 

SDL Engine 

The SDL Engine is composed of the SDL Kernel and the SDL Environment and contains all 
services that are necessary to execute a SDL system that has been generated with a specific 
transformation method. 



Generated SDL System 

The generated SDL system is the SDL system that has been transformed by a transformation 
method into native code and linked with the SDL Engine to form an executable. 
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