
Development of a Runtime Environment
for SDL Systems on Resource-Limited Platforms

M. Krämer, T. Kuhn

Technical Report 345/05

Development of a Runtime Environment for SDL Systems
on Resource-Limited Platforms

M. Krämer, T. Kuhn

Computer Science Department, University of Kaiserslautern, Kaiserslautern, Germany
{kraemer,kuhn}@informatik.uni-kl.de

Technical Report 345/05

Computer Science Department
University of Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany

Technical Report

Development of a Runtime Environment for SDL
Systems on Resource-Limited platforms

M. Krämer, T. Kuhn

[kraemer, kuhn]@informatik.uni-kl.de

Abstract

This report describes our ongoing work of creating a runtime platform for SDL systems on
resource limited platforms. It mainly focuses the connection of generated SDL systems with a
generic environment through the SDL Environment Framework for micro controllers, called
µSEnF. The µSEnF enables SDL systems to communicate through a mostly hardware
independent interface with the native hardware. This approach keeps the SDL systems
portable, since no hardware dependent functions are contained within the SDL systems. It also
keeps µSEnF portable, since its interaction points with generated SDL systems and operating
systems are well defined. This way, only relevant parts of µSEnF must be changed when it is
ported to another runtime platform, or when it should be used with a different code generator.
Additionally, this report presents our first experiences on creating code for the MicaZ motes
from crossbow, a platform that is used for very small applications within the domain of
ambient intelligence and sensor networks.

1. Introduction

1.1. Motivation

Embedded systems become more important every day, so also the software that is running on
these systems becomes more important. Especially in the still young domain of Ambient
Intelligence Systems [AHS02], hardware platforms are expected to become smaller and more
energy efficient, yielding in platforms with severe resource limitations. Since the costs of
software systems currently are mainly controlled by money spent for maintenance,
reengineering and debugging – also caused by the lack of available documentation – new
methodologies have to be defined for developing software. One of these methodologies is the
model driven development process. There are many methodologies how model driven
development can be implemented in a specific domain, one possibility is the model driven
development process with SDL that has been described in [FG05a].

This report presents our current work of creating and implementing a runtime platform for
SDL systems on resource-limited platforms. Our runtime platform enables the usage of our
model driven development process even on platforms with only very scarce resources. Model
driven development on these platforms is a challenging task because applications are created
with a theoretical model in mind, generally based on finite state machines. These models
usually do not consider a limited amount of resources, for example for signal input queues.
Mapping these theoretical models to resource limited hardware can cause the application to
become unreliable because signals from one process to another one might be dropped. So
there is a need not to only provide a runtime platform that is capable of executing models on
these platforms, but also the reliable execution of these applications must be guaranteed. This
includes hiding the limitations on queue size to the user or at least to provide methodologies
to overcome this problem.

This report presents the current state of our work to implement an execution platform for SDL
systems, and a first evaluation of the possibilities with this approach as well as the further
work that has to be done in this area.

1.2. Domain description

In the embedded systems domain, especially when considering Ambient Intelligence systems,
multiple specific requirements have to be considered. These are limited processing and
memory resources, very limited energy resources – both constraints make the code generation
and the generation of a runtime platform to execute this code for these Platforms a very
challenging Task. Also real-time and reliability aspects have to be considered. These systems
are usually expected to react reliably to a given situation within a defined period of time.

1.3. Our goals

For being able to perform model driven development on any platform, a runtime engine for
executing these models has to be implemented. This is a challenging task, because the
targeted hardware provides only very scarce resources. Also the domain specific requirements
like reliability and the real-time abilities have to be considered. So our detailed goals for this
ongoing work are the following:

• Execute SDL systems on resource limited ambient network nodes:

Provide a platform for executing SDL systems on resource limited ambient network
nodes. Evaluate possible code generators, possible operating systems, whether automatic
code generation is possible and the efficiency of the generated code. Also possible
scheduling and memory management strategies should be evaluated and eventually be
integrated into the SDL platform if necessary.

• Provide a generic hardware interface to common hardware on these nodes:
Identify necessary hardware that are common to all ambient network nodes and provide a
methodology for integrating new hardware into the platform in a documented manner.

• Evaluate the necessary partitioning:
Ideally, all of the intelligence of the communication system should be implemented in
SDL while the more generic tasks may be performed in the operating system, if the SDL
platform is not accurate or fast enough to accomplish these tasks. Therefore, necessary
interfaces are to be developed, based on experience from other projects, or based on
literature studies.

• Evaluate the timing characteristics:
The timing characteristics of the platform should be evaluated including scheduling delay
and the jitter that must be calculated for receiving signals or timers. Achievable timing
capabilities of such a platform need to be evaluated. We expect that some predictable
timing characteristics can be achieved when performing a more tight integration of the
SDL virtual machine with the used operating system as it is done in this work.

• Evaluate the achievable reliability:
The platform to be developed must be reliable - also with respect to the limited memory
resources and specific properties of the SDL language. Therefore, workarounds for the
theoretical model of infinite SDL queues must be developed to keep the behavior of the
system predictable – even under conditions with high signal load.

• Integrate into development- and simulation process:
There should be a possibility to integrate the platform into our model-driven development-
and simulation process.

1.4. Scope of this report

This is a report describing our work in progress. Currently, we have a platform capable of
executing SDL systems on MicaZ motes, using an Atmel ATMega128L micro controller. We
consider this platform as a first step in the direction of generating code from SDL systems,
because the integration of the SDL system, mainly the scheduling of transitions and the
realization of timers on the micro controller hardware is still very basic. This report presents
the current state of our work, the basic structure of our runtime platform, its capabilities and
an outlook on our future work plans with SDL systems on micro controllers.

1.5. Related work

There has been already some effort of integrating SDL code in embedded systems, either by
integrating existing code generators with real-time operating systems, or by providing manual
transformation schemes. This section will briefly survey the existing work in this area.

• Real-Time developer studio [Pra] is an implementation of SDL-RT [SDLRT], an
extension of the SDL language for real time purposes. Some of the operating systems

supported by the Real-Time developer studio are capable of being executed on resource
limited nodes like the MicaZ platform.

• [DRDK04] proposes the use of manual transformation patterns for transforming SDL
systems into native code for TinyOS [HSWHCP00].

• Telelogics SDL Suite [Tel] offers code generation facilities for a variety of platforms
supported by different code generators. While the CAdvanced code generator aims at
generating code for larger embedded platforms like PC-Style hardware or XScale
architectures, the CMicro code generator generates code for executing on resource limited
platforms. Different types of integrations with the operating system are available and can
be manually adapted.

• Contrast is a new SDL runtime environment that is developed at the University of
Kaiserslautern. Although it looks very promising, it is currently far away of being usable
on resource limited node platforms due to its memory requirements.

• Cinderella SDL [Cin] with the available code generators Cinderella SITE and Cinderella
SLIPPER is capable of generating C++ code (if using SITE) or C code (if using
SLIPPER). From the available information, it seems that the generated code from
SLIPPER is not tightly integrated with operating systems, but provides a portable SDL
virtual machine written entirely in C.

• The SDL operating system “Reflex”, developed at the Agder University College as a
master thesis [WT04], is an entirely new SDL runtime environment, for which currently is
no compiler available yet. The kernel offers the necessary features for mapping most SDL
constructs to native functions of the operating system.

• In [DSH99], the possibility of generating VHDL specifications and C code out of SDL
specifications is presented. It is shown, that time critical parts of SDL systems can
eventually be implemented in hardware – directly generated from SDL specifications if
software solutions are not efficient enough. Unfortunately, a performance analysis of the
generated systems is missing in the paper.

• In [DZM01], the CAdvanced code generator of Telelogic TAU was used for generating
code from a SDL specification. A tight integration with the Virtuoso RTOS was
performed. Unfortunately, as with [DSH99], the timing characteristics of the resulting
system were not published in the paper.

• In [ADLPT99] proposes the use of real-time temporal logic for integrating non-functional
aspects like timing into a SDL system. A new, predictable, execution model is proposed
which should enable the developers of performing analysis of their specifications. The
timing behavior prediction is based on mapping the SDL specification to a transition
graph, and performing a schedulability analysis afterwards.

Although some of the works mentioned above use real-time operating systems, no platform is
capable of guaranteeing maximum delay and jitter values for response times and timers.
Depending on the system load it might be possible that those guarantees are beyond reach for
all processes. However, our goal is to offer predictable timing to at least a subset of SDL
processes under specific conditions. A SDL system could consist then of a set of time critical
processes and of a set of ordinary SDL processes.

Another important fact that also did rise during the first experiments with our runtime
platform is its reliability. Especially when interfacing to communication hardware using a
very low level interface, it is possible that message queues become filled. Then, some signals
must be dropped – possibly resulting in unexpected behavior of the SDL system. This
problem must also be investigated when developing a runtime platform for the ambient
intelligence domain.

1.6. Structure of this work

The following sections are structured as following: Section 2 describes the requirements that
have been identified for the runtime platform. Section 3 documents the design of the runtime
platform, Section 4 highlights implementation details. In Section 5, the platform is evaluated.
Section 6 summarizes conclusions and Section 7 points out further research areas.

2. Requirements and challenges

In this section, the specific requirements to a runtime platform for SDL systems in the context
of ambient intelligence systems are evaluated. Ambient network nodes usually are equipped
with low-power hardware. This includes a micro controller, some communication hardware,
interfaces to sensors or general purpose I/O and eventually wireless communication hardware.
Since our domain is the development of communication protocols for wireless Ad-Hoc
networks, we did only consider sensor network hardware that is equipped with a transceiver
chip for wireless communication.

2.1. Survey on available platforms

In the sensor network and in the ambient intelligence domain, mainly two platforms are
available for research:

• The particles developed at the University of Karlsruhe:
The particle computers, developed by the University of Karlsruhe are a quite new sensor
network platform. The nodes are equipped with PIC micro controllers, interfaces for
sensor hardware, serial data storage and a chip that provides a unique serial id. The used
processor is a PIC18F6720 with 128 Kbytes of flash-ram for program code and 4
Kilobytes memory for data. Unfortunately, there are currently no nodes available for
buying that contain the CC2420 transceiver chip – a chip that would provide a 802.15.4
compatible physical layer. Although such a particle is planned, it is not yet available.
Also, there is not much documentation on the used operating system available.

• The Mica motes created by the University of Berkley:
The Mica family is equipped with Atmel ATMega micro controllers, transceiver
hardware, two RS232 ports and interfaces for sensor hardware. Furthermore, like on the
particles, serial data storage is available and every node contains a chip with a unique ID.
The Atmel ATMega128L has 128Kbytes flash-ram and 4Kbytes of data ram, so
generating code for this platform from specifications will be a challenging task. The Mica
nodes are operated using TinyOS; an operating system designed for very small devices
and can be programmed by using the Gnu C Compiler or by using nc, an extension of the
C language for resource limited platforms. It should be noted that also the Mica motes
exist in multiple versions – we decided to use the newest MicaZ motes that are equipped
with an 802.15.4 compatible transceiver chip – the CC2420. Since the CC2420 only
provides the physical interface, it is possible to specify the Mac layer entirely in software,
which is an excellent base for our research plans.

These two platforms are the platforms, that are most commonly used in research and industry.
Because of availability issues and because of the available open operating system, we decided
to favour the MicaZ nodes for the development of our SDL runtime environment. The
CC2420 transceiver chip offers an 802.15.4 compatible physical layer which is a promising

technology in the emerging research area of sensor networks. Furthermore, the processors
used on the Mica platforms have more calculation power, so they qualified as an ideal
platform for the first revision of our runtime system.

2.2. Platform description

Independent of the micro controller or the operating system that is being used, nearly all
possible platforms for ambient intelligence networks have similarities. This is due to the fact
that these nodes have to remain active over a long period of time and have only limited energy
resources [HD02]. The following, specific limitations are common for nearly all mobile
nodes:

• Energy aware design:
Since energy is the primary concern in ambient intelligence networks, all available
platforms use micro-controllers of some sort. Apart from having only scarce resources in
terms of memory or computation power, these micro controllers often also do not offer
features that would be expected from a mainstream processor like separated addressing
spaces, multi tasking or a memory management unit. Another similarity among all micro
controller platforms is the very limited size of available data ram. Possible scheduling and
memory management strategies have to be evaluated to ensure that SDL systems run
reliable on these platforms.

• Communication hardware:
Unlike pc platforms, nodes for embedded ambient intelligence networks usually provide a
very low-level and time critical interface to the communication hardware. It must be
evaluated which parts of the interface to the communication hardware have to be written
in native code, and to which extend, the intelligence can be kept within the SDL system.

• Operating system:
The operating systems used on these platforms are usually very basic, optimized for low
memory and processing power consumption. Normally, they provide implementations of
cooperative or even preemptive scheduling and message based communication. Time
slices are not common in this domain, due to the unpredictability of task interruptions.
The offered features of these operating systems range from simple runtime libraries to
systems that allow multi tasking. Normally the operating system is directly linked against
the application that is being executed, so there is only one application running on a
ambient intelligence network node.

2.3. Available code generators

We did evaluate two possibilities further for transforming SDL systems into native code: The
CMicro code generator that ships with Telelogic TAU [Tel] and a set of manual
transformation rules for transforming SDL specifications into TinyOS compatible code
[DRDK04]. Because Telelogic TAU is already integrated in our development process and
because of the possibility of integrating the generated code into our ns+SDL simulator
[KGGR05], we did choose the CMicro code generator for the first iteration. This code
generator allows different integration types for integrating the generated SDL system into an
operating system. To achieve first results, we did choose to use the bare integration offered by
the CMicro compiler of Telelogic TAU. It provides a very loose coupling of the SDL system
with the operating system. For the first revision of our runtime platform this was sufficient,
because this integration methodology is very simple, as it only required a very loose coupling
between the generated SDL System and the runtime platform. Although the CMicro code

generator does not support all SDL language features, like the priority input symbol, it
provides a very special extension called signal priorities. This enables the developer to specify
a global order that should be used when processing signals.

3. Requirements

We first identified the necessary functionalities and did a first test, whether integration with
TinyOS could be successful. After the first promising results, we defined the requirements for
the platform in terms of required services.

3.1.1.

3.1.2.

3.1.3.

Functional requirements concerning hardware drivers

There are basically two methodologies for connecting hardware to SDL systems:

• Synchronous access by using blocking procedure calls – they block, depending on the
used scheduler, at least the SDL process that issued the procedure call.

• Signal based access by sending signals to the environment. This is an asynchronous
interface, because the signals are (at least virtually) processed concurrently to the running
SDL system.

The following requirements have been defined, based on our experiences with the BicMon
project and based on the requirements of a SDL specified media access control component:

• Compatibility to the SDL Environment Framework [FG05b] if possible. As a long term
goal, all platforms should provide the same interface to the supported devices to SDL
systems.

• Signal based access to the radio communication hardware. This should be a low level
interface to facilitate the creation of MAC layers in SDL.

• Signal based access to the available serial (RS232) communication ports for
communicating with local hardware like integrated sensor boards.

• Signal based and synchronous access to the available light emitting diodes for signaling
and debugging purposes

• Signal based access to a unique ID that may either be provided by hardware, or that may
be set during uploading the software on the microcontroller.

• Signal based access to the analog/digital converters
• Signal based access to the general purpose digital I/O pins

Additional functional requirements to the runtime platform

The following requirements were identified during our work on the BicMon demonstrator and
are usable to a variety of possible SDL systems:

• Synchronous access to a random number generator
• Synchronous access to an interface for reading configurations
• Synchronous access to an interface for sending logging messages to the environment –

probably by using one of the serial ports.

Non functional requirements to the runtime platform

Besides of the functional requirements, numerous non functional requirements have been
defined for the SDL platform:

• Memory management paradigm:
Dynamic memory should not been used, because of its unpredictability. It might be
possible to allocate statically a small portion of the available memory for abstract data
types or transmission buffers. This memory may not affect the other partitions, for
example the SDL queue and the software platform must be able to handle out of memory
situations correctly.

• Reliability issues:
The platform must be reliable, so no unexpected behavior may occur. This is more deeply
explained in Section 6.3.

• Portability:
The platform should be portable to other SDL Kernels and code generators as well as to
different hardware platforms. Also, the environmental interface that is offered to the SDL
system should be as generic as possible. This should support a large range of different
SDL systems without having to adapt the runtime platform.

4. Design

This section describes the main design rationale of our runtime platform. All relevant
components are described as well as µSEnF, the SDL environment interface that is used to
connect the generated SDL systems to the hardware.

4.1. Notation

The following notation is used for specifying the structure of the SDL runtime platform:
Components with defined interfaces are connected by arrows. These interfaces are called
interfacing points. There are mainly two types of interfacing points: Interfacing points that are
connected with incoming arrows and interfacing points that are connected only to outgoing
arrows. Interfacing points connected by incoming arrows are used by other components; these
interfacing points are mapped to functions with defined names. These functions make up the
exposed interface of a component. Interfacing points without incoming arrows are not called
by external components – these interfacing points are normally represented by ordinary
function calls in the source code.

4.2. Static structure

Because of the large number of possible configurations of a sensor node when considering the
used SDL code generator, the used native operating system and the used hardware, a strict
separation in independent layers with defined interfaces, called interfacing points became
necessary to fulfill the portability requirement. Figure 1 illustrates the identified components
and their relationships.

Figure 1: Static structure and dependencies of our SDL runtime platform

SDL SEnF drivers

SDL Functionality

µSEnF

Native operating system

SDL Kernel

Of-the-shelf component

Modifiable component

Interfacing point

Generic Interfacing point

HAL

Dependency

Figure 1 shows all components that are required for executing a SDL system on a resource
limited platform as well as their dependencies and interfacing points. The components are
drawn as squares while the dependencies are indicated by arrows, where the arrowheads show
the direction of the dependency. Two types of components are distinguished in the diagram:
Of the shelf components and components that can be modified.

Of the shelf components provide usually a more or less fixed interface. Two of these
components have been identified: The SDL Kernel that depends on the used code generator or
on the used transformation method and the native operating system that usually depends on
the used hardware platform.

Modifiable components can be separated into those components that make up the runtime
platforms, and into the SDL system that is to be executed. Of course, the runtime platform
should be re-usable for multiple SDL systems, so the interface between SDL and its
environment must be a generic one. The components that make up the runtime serve two
purposes: They provide necessary functionality for executing these SDL systems, but they
provide also glue code that maps the functionalities of the of-the-shelf components, that they
depend on, to a more generic interface. As a result, two larger blocks can be identified:

• The generated SDL system
• The native interface

These blocks encapsulate their functionalities in generic interfaces; these are drawn as generic
interfacing points – generic interfacing points mark blocks that can be exchanged. These are
the native interface, the generated SDL system – and because the dependency of the SDL
system with the used SDL Kernel is a special one, that is resolved by the compiler or the used
transformation method, the SDL system itself. For example, the hardware abstraction layer
can be kept when the used SDL Kernel – and as a result of this, also the implementation of the
depending µSEnF is changed. This could be the case when moving from CMicro bare
integration to CMicro tight integration. Depending on the similarities of the platforms, the
code may partially be kept though. This makes this platform quite powerful, because it
enables the developers to quickly bootstrap SDL systems on an existing platform, without
having to worry about accessing platform specific hardware. The functionalities of these
blocks is implemented in the components that it is made up of – these components are
described in more detail in the following paragraph. They are separated into components that
were created as a part of this work, into 3rd party components that were used out-of-the box
and into those components that have to be specified by the protocol developer:

Created components:

• SDL SEnF drivers:
These drivers make up the communication endpoint between the micro controller
specific SDL Environment Interface µSEnF and the SDL system. They are
implemented as SDL processes with defined names, which are addressed by the SDL
environment when sending signals into the SDL system. They are also an abstraction
layer between the SDL system and the concrete device that is used, allowing to
quickly changing the used driver without having to rename signals in the SDL system.
The interfacing points between the SDL SEnF drivers and the µSEnF are defined by
every driver, for the SDL drivers this is a set of incoming and outgoing signals. The
realization of the interface to C depends mainly on the used transformation method –
and as a result, on the used SDL Kernel.

• The micro controller specific SDL Environment Interface (µSEnF):
This component implements the environmental interface of the SDL system. This
interface strongly depends on the used code generator - µSEnF in its current
implementation is compatible to the CMicro code generator of Telelogic TAU. The
µSEnF strongly depends on the SDL Kernel that has usually no standard interface – so
µSEnF has to be re-implemented – at least partially – for every SDL Kernel that is to
be used. In this component, also the methodology of sending signals into SDL is
defined. Either the signals are stored at reception until they are polled, or they are sent
asynchronously into the SDL system. The implementation of the interfacing points to
the SDL drivers depend on the methodologies for sending signals to- and for receiving
signals from SDL, that are offered by the SDL system. The interfacing points to the

hardware abstraction layer are realized as an ordinary interface of C functions – there
is a set of functions defined for every device driver in the HAL for sending
notifications, and also a set of callback functions in µSEnF for receiving notifications
from the hardware. The µSEnF must also implement functions that are required by the
generated SDL system to be able to execute – so the concrete implementation of
µSEnF also depends on the used code generator.

• The Hardware Abstraction Layer:
The Hardware Abstraction Layer serves as a defined interface between µSEnF and the
hardware or the native operating system. While the interface to µSEnF is fixed, the
interface to the native operating system strongly depends on the used operating
system. Required functions that are not available though the operating system, have to
be provided by the implementation of the HAL.

Components that have been used out-of-the box:

• SDL Kernel:
This component relies on the used transformation method and is either part of the
transformation framework, or of the used compiler. The coupling between this
component and the SDL system is a very specific one, because this component
provides the runtime library for SDL and the implementation of all SDL primitives. It
also defines the interface that SDL uses to communicate with its environment,
resulting in the need of a matching µSEnF component.

• The native operating system:
Depending on the type of the native operating system, it might only provide some
functions for accessing the hardware, or a more complex interface, providing also
higher level operating system functionalities. The Hardware Abstraction Layer
depends at least partially on the native operating system.

Components that have to be specified by the protocol developer:

• SDL Functionality:
This is the SDL system that was specified by the protocol developer. It contains the
functionality that is specific to this system as well as a set of SDL SEnF drivers. This
SDL system is transformed by the used transformation method into native code. This
component does not belong to the runtime platform being generated, but represents the
functionality of the SDL system that is to be specified by the developer. The resulting
SDL system contains this functionality, in any representation that the developer might
choose.

The following sections give a more detailed overview on the components that were created as
a part of this work.

4.3. SDL SEnF Driver

The SDL SEnF Drivers are a part of µSEnF. They use SDL signals to communicate with
µSEnF by using the available input, and output functions for receiving signals from the
environment and for sending signals to the environment. Mainly, they serve two purposes:

• Providing an abstraction layer between SDL and the real hardware
• Providing a communication endpoint

• Provide synchronous functionality

The abstraction layer provided by these drivers comes handy, when the used hardware is to be
changed. For example, a set of SDL SEnF Drivers offer a generic serial interface to SDL,
while to µSEnF, either specific signals for UART or Bluetooth communication are used. So
the interface to SDL is specified by the offered functionality of the driver, in the example
above serial communication, while the interface to µSEnF is specified by the concrete
hardware that is used for providing this functionality. This enables the developer to quickly
change the used hardware without having to worry about renaming signals in his SDL
specification.

Another important role of the SEnF Drivers is that they might provide synchronous
functionalities realized as SDL procedures. These are functionalities that are not mapped to
environmental signals, but to direct calls into µSEnF using native Code. Since the offered
methodology of integrating native C code into SDL may vary between the available code
generators, parts of the SDL SEnF Drivers implementation might be required to be adapted to
a different compiler.

4.4. SDL Environment Framework for micro controllers (µSEnF)

The µSEnF provides the interface between the SDL system and its environment. Although it
was a goal to keep µSEnF compatible to the SDL Environment Framework SEnF that is used
on platforms with more resources some changes became necessary. These changes are
documented in Section 4.4.1 below.

The implementation on µSEnF depends on the used code generator, and on the used strategy
for sending signals into the SDL system. We decided to asynchronously send incoming
signals directly into the SDL system. Although this will not be a great benefit with respect to
the achievable reaction time with our current bare integration, plans are to develop a runtime
platform that is implemented by using a tight integration of the SDL system. This would
allow us to directly affect the scheduling of the SDL system and to preempt SDL processes
when necessary for achieving better response times.

4.4.1. Interface changes to SEnF

The data type used for representing data to be transmitted or received data was changed in
µSEnF to respect the needs of resource constrained devices. The octet strings that are used by
SEnF for sending or receiving data cannot be used with µSEnF for the following two reasons:

• Octet strings require dynamic memory allocation:
The behavior of octet strings, if there is not enough memory available is not defined.

• Octet strings require deep copies of the signal data:
If an octet string is to be sent to another process, a deep copy is made. Although this
allows both processes to modify the data contained in the octet string, normally this is not
necessary. Our experiences showed, that modifying a received packet, or packet that is to
be sent, concurrently by multiple processes is rather uncommon.

These two issues prevented the use of octet strings for us. So we decided to introduce a new
data type SEnFPacket that acts like a pointer type in C. Every instance of this packet type has
a fixed size and is allocated from a ring buffer, so the software has to be aware of the
possibility of having no packet buffer available when it is requested. Our plans for the near

future include supplying a set of SDL-patters that document the intended usage of this data
type. Another necessary change was the representation of the time. On embedded devices, the
time is usually measured in terms of ticks rather than using a real time clock. The duration of
a tick – and therefore also the available timer resolution – strongly depends on the used
hardware abstraction layer. A specific package has been added to µSEnF that cares about
converting

4.4.2. Interfacing SDL with the environment

This section describes the current interfacing used for integrating SDL systems with the
environment. Figure 2 shows the current structure of µSEnF.

Figure 2: Structure of µSEnF

HAL

SDL

µSEnF

xInEnvxOutEnv

hal_xxx

hal_xxx

As indicated in Figure 2, several functions are used by µSEnF for communicating with the
SDL system. The function xOutEnv manages the outgoing signals. Outgoing signals are
directly mapped onto the Hardware Abstraction Layer, without any buffering. Callback
functions are used to transmit incoming signals to the SDL system. The used code generator
generates one queue that is shared by all SDL processes, and which contains all signals that
are currently en route. If signal priorities are used, which is a proprietary extension of
Telelogic TAU, the signals are sorted accordingly when they are inserted into the SDL queue.
Afterwards, SDL starts processing the signal that is first in queue. Figure 3 illustrates this
behavior.

Figure 3: Queuing behavior of CMicro

SDL queue

SDL process SDL process

As it can be seen, always the first signal of the signal queue is consumed. It can also be seen,
that every signal already contains its receiver process. Due to this fact, every signal that is
being sent into the SDL system from the environment must be addressed to a specific process.
To keep the environment reusable, we decided to introduce the concept of the SDL Drivers
that has been described above. Apart from providing functions for sending signals to the
environment and receiving signals from the environment, µSEnF must also provide the
interfacing points that are requested by the used SDL runtime. For the CMicro runtime using
a bare integration, these interfacing points are described in Section 5.1.

4.4.3. Error handling

The µSEnF also contains error handling facilities. These error handling facilities usually catch
unexpected situations, that can not be handled by SDL like signal drops due to full buffers or
unspecified reception – although it is up to the view of the protocol designer whether this
should be treated as error or not. Errors are reported by the supplied SDL Engine of Telelogic
TAU. Currently, there are three strategies available to deal with errors: Ignoring them, this is
suitable for expected and non critical errors like unspecified signal reception, to stop the
whole system with an error message repeated to the serial port – this is especially useful while
debugging or testing – or by issuing a complete reset of the network node to bring it back into
a defined state – this is most common in production systems.

4.5. Hardware abstraction layer

The Hardware Abstraction Layer serves as a defined interface between µSEnF and the
hardware or the native operating system. As indicated by the generic interfacing points, the
interface to µSEnF is does not contain any operating system specific parts. The interface to
the native operating system is not as generic and also strongly depends on the used operating
system and its offered services. The HAL offers direct access to available devices on the
micro controller like serial and radio communication. This component is an interface that
maps the functionality of device drivers to the generic interface that is offered to the generated
SDL system.

The generic interface between the Hardware Abstraction Layer and the generated SDL system
is realized by a set of functions with specific naming conventions. Since this is a bidirectional
interface, both blocks have to offer a defined set of functions to make the linking possible.
Signals from SDL to the hardware abstraction layer are mapped by to µSEnF calls into the
implementation of the HAL; signals from the hardware abstraction layer are sent to µSEnF by
using the post functions that are provided by the generic interface of µSEnF. The concrete
interface that has been specified for the generic interfacing points of µSEnF and the HAL is
documented in Section 5.2.

5. Implementation

As a first result, we did implement our SDL runtime platform and our SDL Engine on a
MicaZ mode running TinyOS. Since we did use TAU CMicro to generate C code out of the
SDL specifications, the Implementation of the SDL Engine is specific to CMicro. The
following sections briefly describe highlights of the implementations.

5.1. Bare integration of the TAU CMicro runtime

The bare integration of the CMicro code generator from the Telelogic TAU SDL Suite
requires only very few integration with the used operating system. This section describes how
a bare integration, the integration used by the first revision of our platform, can be performed.

5.1.1. Expected functions from the runtime system

The following service primitives are required to be present in µSEnF for performing a bare
integration:

Timing related

These functions are used to interface the SDL system with the current system time.

• xmk_NOW()
This function is called by SDL to request the current system time from the runtime
environment.

• xmk_InitSystime()
This function is called once when starting the system; it can be used to initialize the
necessary hardware registers.

• xmk_SetTime()
This function is called when the current system time should be set to a specific value. It
might be called if the SDL system detects an overrun of the time.

Memory related

The following two functions must be present, even if no dynamic memory is being used by
the SDL system due to the fact that the compiler cannot ensure that signal parameters will
never grow too large for being handled by static memory allocation. Our runtime platform
will issue an error, resulting in either a reset or a system stop if one of these functions is
called. The used error handling depends on compile time settings.

• xAlloc()
This function is used to allocate a block of a specified size.

• xFree()
This function is used to free a memory block.

Input and output of signals

These functions are used by the SDL system for communicating with the environment.

• xInEnv()
This function is called by SDL to poll signals from the environment.

• xOutEnv()
This function is called every time a signal is sent from SDL into the environment.

• xInitEnv()
This function is called once upon the start of the system. It can be used to perform
required initializations.

Error Handling

This function is called by SDL when something unexpected happened, for example a dropped
signal due to a full signal queue.

• ErrorHandler()
This function is expected to handle an error. Depending on the actual error, it may be okay
to return to the SDL system.

Handling of critical paths

These two macros have to be present to handle critical paths. They probably need to be
integrated with the used native operating system.

• XMK_BEGIN_CRITICAL_PATH
Start a critical path.

• XMK_END_CRITICAL_PATH
End a critical path.

5.1.2. Offered services to the runtime system

The following main service primitives are offered for controlling the SDL system when using
bare integration:

• xmk_InitQueue()
This function must be called before any other provided function is being called. It
initializes the SDL queue.

• xmk_InitSDL()

This function is to be called before xmk_RunSDL should be called. It initializes the whole
SDL system.

• xmk_RunSDL()
This function never returns. It runs the SDL system in an endless loop.

• XMK_SEND_ENV()
This function can be used to asynchronously post events into a running SDL system or to
send signals synchronously to SDL from within the xInEnv function when SDL polls for
new signals.

5.2. Generic interfacing points between HAL and µSEnF

This Section documents the services that are offered by the Hardware Abstraction Layer,
sorted by their categories, and the services that are required to be offered by µSEnF.
Depending on the offered services of the micro controller, not all of these interfaces have to
be present in a concrete HAL. However, interfaces must be implemented completely, so if, for
example, radio communication is supported, all services that belong to radio communication
have to be implemented.

5.2.1.

5.2.2.

Naming conventions for the interfacing points

Functions of the hardware dependant interface are currently prefixed with ‘driver_<device>’.
Events from the hardware are signaled by using callback functions.

Radio communication

Currently, there is support for the ChipCon CC2420 Radio Transceiver chip included in the
hardware abstraction layer. During the work on our QoS MAC layer MacZ [KF05], the
necessary primitives for a low level interface from SDL to the hardware have been identified.
In concrete, the following interfacing points have been implemented for sending signals to the
transceiver chip:

• driver_CC2420_Setup(Channel: Integer, TxPower: Integer)
This signal sets the channel that the transceiver chip will operate on as well as its
transmission power for future transmissions. For the channel parameter the following
constraint must hold: 10 < Channel < 27, for the TxPower parameter, the following must
hold: 2 < TxPower < 32.

• driver_CC2420_Mode(Mode: Integer)
This signal sets the CC2420 to one of three operating modes:

o Mode 0: Power down mode
o Mode 1: Idle mode
o Mode 2: RX mode

The TX mode is automatically set when a transmission request is sent to the driver.

• driver_CC2420_Send(Data: void*, Length: Integer)
This sends the given data packet without checking the CCA pin prior to sending. Since
pointers are not implemented in SDL, a special data type must be provided that
encapsulates all necessary behavior.

• driver_CC2420_SendCca(Data: void*, Length: Integer)
This sends the given data packet with checking the CCA pin prior to sending. Depending
on the state of the CCA pin, either the packet will be sent or an error message is returned
immediately.

The following interfacing points are expected by the HAL for signaling received events from
the transceiver chip:

• driver_CC2420_SFD(Success: Boolean)
This signal is either received as a response to a send operation or while the transceiver
chip is in RX mode. When the transceiver chip is in RX mode, the reception of this signal
indicates the receiving of a valid preamble and start-of-frame delimiter, indicating the
arrival of a new packet. When this signal is received as response to a send operation, the
value “true” for the parameter indicates the end of a successful transmission – the value
“false” is only returned as answer to CC2420_SEND_CCA and indicates a busy medium.
Note that a value of true is not equivalent to a successful reception of the signal at any
receiver node.

• driver_CC2420_Sending(Success: Boolean)
This signal is always sent to the SDL system as a response to CC2420_SEND, or as a
response to CC2420_SEND_CCA if the medium was idle. It indicates the successful
beginning of a send operation. The parameter is currently unused.

• driver_CC2420_CCA(Idle: Boolean)
This function is called for reporting the state of the medium. This signal is only issued
when the state of the medium has changed or the runtime is unsure about the current
media state – for example after transmitting some data. If Idle is true, then the medium is
idle, otherwise it is busy.

• driver_CC2420_Recv(Data: void*, Length: Integer, GoodCRC:
Boolean, RxStrength: Integer)
This signal indicates a completely received packet. The first two parameters must be
encapsulated for SDL because pointer handling should be omitted. The third parameter
indicates whether the CRC check was successful, the forth parameter indicate the strength
of the received signal.

5.2.3. Serial communication

The following interfacing points are available to transmit signals from SDL system to the
hardware abstraction layer.

• driver_UART_Send(void * data, int length)
This function sends a packet to the serial communication port with the number 1.

• driver_UART_xSend(int port, void *data, int length)
This function sends a data packet to the given serial port. The available port numbers start
with 1.

• driver_UART_Setup(int port, int baudRate)
Calling this function sets up the serial communication for the given port number.

The following interfacing points are expected by the Hardware Abstraction Layer to signal
events to the SDL system.

• driver_UART_Recv(int port, uint8 octet)
This signal indicates the reception of an octet via the serial communication interface.
Please note that this interface does not preserve message boundaries. The first parameter
contains the port where the data was received from; the second parameter contains the
received octet.

5.2.4.

5.2.5.

5.2.6.

5.2.7.

Light emitting diodes

The following interfacing point is available for controlling the light emitting diodes of the
micro controller.

• driver_LED_Set(int operation, int bitmask)
This function changes the state of the available light emitting diodes by applying a logical
operation and a bit mask to the current state of the lamps. The available operations are
currently set, and, or and xor.

Access to unique ID

This interface has not been specified yet and is considered to be future work.

Access to the analog/digital converters

This interface has not been specified yet and is considered to be future work.

Access to the digital general purpose I/O

This interface has not been specified yet and is considered to be future work.

6. Evaluation

This section evaluates our current platform. The results presented here are preliminary,
because the development of the runtime platform is still work in progress. Two criteria for the
evaluation are separated: Timing issues and reliability issues. For being able to fully
understand these issues, some specifics about SDL must be known. These specifics are
described in the following section.

6.1. SDL Model

SDL assumes a theoretical model of communicating extended finite state machines that have
infinite queues for storing incoming signals. In the model of SDL-96, these extended finite
state machines are running concurrently. A running state machine executes a transition
whenever it is triggered. Transitions may be triggered by the following events:

• Received signals
• Continuous signals
• Spontaneous transitions
• SDL timers

Received signals are signals that have been sent to a specific process, either by another SDL
process or by the environment. Upon reception of a signal, the associated transition is
executed.

Continuous signals cause a transition to fire every time the signaling queue of a process is
empty. This construct should be avoided, because the order of scheduling SDL processes is
not specified – so, depending on the used SDL Kernel it might happen that the process with
the enabling condition will be the only running process. Since the scheduling order of the
processes is not defined in the SDL standard [SDL100], it is not possible to avoid this case –
whether this could happen or not depends on the used runtime environment. Therefore, this
construct should be avoided when developing embedded systems – in the further work,
continuous signals will not be considered when doing formal verifications.

Spontaneous transitions may fire at any possible time. This is used to model behavior that has
not been implemented or to specify indeterminism, for example when a medium with the
ability to loose messages should be specified in SDL. In production systems, this construct
should be omitted, so it will not be considered further.

SDL timers may cause a transition to fire at a specific time. Unfortunately, only the minimum
waiting time for a timer can be specified – it is up to the timer, and probably also depends on
the implementation, whether it fires at this point of time or at any later time.

Since all state machines are running concurrently in the theoretical model, they may also
concurrently fire transitions and process signals or timers. When this behavior is mapped to a
real hardware, two mappings are possible:

• Preemptive scheduling
• Non-preemptive scheduling

When a preemptive scheduling is implemented, processes may interrupt each other when they
receive a signal. In Telelogic TAU, this is combined with a priority mechanism, so that only
lower priority processes will be interrupted.

One interesting extension of Telelogic TAU is the ability to define signal priorities. Unlike the
process priorities that have been mentioned above together with preemption, signal priorities
may be used to associate signals with a specific priority. So the signals with higher priority
will be inserted in the SDL queue before the signals with lower priority. This guarantees that
higher priority signals will be processed before the lower priority signals.

The following section will evaluate the timing constraints that hold for the current non-
preemptive implementation of our SDL runtime.

6.2. Timing

Two main areas can be spotted when considering timing issues in the embedded systems
domain:

• Required time for reacting on events
• Timer accuracy

For being able to predict the required time for reacting on events, it is assumed that signal
priorities or a similar extension is being used, ensuring that the measured timer signal will

receiver the highest priority. Further work will also consider the achievable timing accuracy
for lower priority signals.

6.2.1. Reaction time on events

The concrete timing heavily depends on the used runtime platform, and on the used SDL
kernel. The used hardware platform affects the timing by its timer accuracy and by the
processing power of the used processor. A kernel that supports preemption can interrupt
processes for higher priority signals, while a kernel that does not support this feature has to
complete the execution of the currently running transition before the newly arrived event can
be handled. So preemption usually results in a better response time to high priority signals.
For being able to start processing an event after it arrived in the SDL system, the currently
running transition must be completed and the new process has to be scheduled. For the case
that that newly arrived signal has the highest possible priority, the following sources for
relevant delay have been identified so far:

• Time required for passing the event from hardware to SDL
• Scheduling and dispatching of transitions
• Execution time of transitions

The following measurements show the time that is required for processing a signal from
another SDL process, and the required time for processing a signal that was sent into the SDL
system by the environment.

Signal from environment

430

440

450

460

470

480

490

500

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301

periodic signal number

Ti
m

e
(m

ic
ro

se
co

nd
s)

 Figure 4: Reaction time for signals from the Environment

As it is shown by Figure 4, a SDL process requires an average time of 470 microseconds to
react on a signal from the environment. The measurement was performed with a SDL system
that is almost idle. The next figure shows the measurement results for signals from another
SDL process.

Signal from another process

240

250

260

270

280

290

300

310

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305

periodic signal number

Ti
m

e
(m

ic
ro

se
co

nd
s)

Figure 5: Reaction time for signals from the Environment

Figure 5 shows, that our SDL platform is faster when reacting to an internal event, but also
that there is still a considerable delay and a jitter that is in the range of 20 microseconds. The
measurement results show, that there is still room for improving the timing performance of
our SDL runtime platform on MicaZ nodes.

6.2.2.

6.3.1.

Timer accuracy

Although SDL timers can currently not be set to fire within a defined period of time, the
implementation usually does its best to fire the timers as accurate as possible. Although this is
not yet sufficient for any real time scheduling, it might be a starting point. Since no
preemption is currently used, the achievable timer accuracy heavily depends on the load of the
SDL system. Improving the achievable timer accuracy is currently ongoing work.

6.3. Reliability

The reliability of a running SDL system is affected by the mapping from the theoretical SDL
runtime model to a concrete platform. This is especially true for the mapping of the
theoretically infinity sized signal queue to a size limited real queue. In the SDL model, every
process has a signal queue that holds all signals addressed to him, that are waiting to be
processed. Due to the limited size of these queues in reality, the problem of possibly full
queues must be addressed. This problem becomes even more evident, if the amount of
available memory is very small. To overcome the problem of a full message queue, the causes
of this problem must be addressed, as well as possible methods for handling such an error
must be evaluated.

Causes for full queues

The SDL signal queue has only a fixed size, which is in embedded devices usually relatively
small. To understand the problem of full queues, the SDL model must be understood. In SDL,
nearly every transition is triggered by an incoming signal or by a timer. The only exceptions

to this rule are continuous signals and spontaneous transitions, which have been described
above. Since both constructs should not be used in embedded systems, these are not
considered further. When not considering these two exceptions, there are three possible
situations, where signals might be added to the SDL queue, and possibly cause an overflow:

• A running transition is sending a signal
• A timer expired
• A signal is sent from the environment to SDL

6.3.2. Possible solution

These situations have to be investigated more deeply in future. For coping the first situation
an understanding of the SDL system is necessary, at least to a certain extend. Projections
could be used to abstract from the functional behavior, by just considering the possibly sent
and received signals by every process. With a more simplified view on the SDL system,
possibly a methodology could be created for analyzing the behavior of the SDL system with
respect to the signals that are created and consumed by its processes. It could eventually be
proofed, that the maximum number of signals would not extend a certain value. This would be
the maximum required queue size.

Timing issues must also be considered when starting to create a model for determining the
required size of the SDL queue. When a timer is set, it will fire a signal to the receiver process
at the time that it expires or any timer later, but by no means any earlier. In the meantime, the
SDL system is able to fire a certain amount of transitions. This can either reduce or increase
the amount of signals in the SDL queue – so the worst case must be expected. Since every
SDL timer can be in the SDL queue only once, according to the SDL standard [SDL100], it
should be possible to model the amount of required signaling space. Eventually, projections
can be used to identify timers that are never concurrent to each other, these timers could share
one requested queue space then.

Another issue that must be considered is the reception of signals from the environment. Since
these signals can be completely indeterministic, we propose to extend the SDL semantics for
environmental signals. A possible solution could be to limit the number of environmental
signals that can be in the SDL queue. This limitation could be a global one, or it could be
grouped by the type of signals – for example for one type of signals the most recent could be
kept when the maximum amount of signals is reached, for another type the first signals could
be kept while the newer ones would be dropped. Creating a framework for ensuring that
queues do not overrun is current work in progress.

7. Conclusions

Our first platform did proof that it is possible to instantiate a model driven development
process on resource limited platforms, like the MicaZ nodes. The developed runtime platform
has a clear structure, with defined, extensible and light weight interfaces which encourages
portability either to a different SDL Kernel or to a different hardware platform. The timing
issues are still a problem that is worked on, since the model of the traditional SDL timers and
SDL signals, maybe a modification is necessary to introduce deadlines – this would enable the
SDL model to become capable of real-time processing. First effort in this direction was
already taken, but further research in this area is necessary. This also holds for the reliability
issues.

8. Further work

Since this is a report on work in progress, numerous work packages still remain open. The
following paragraph lists the works that are currently ongoing or planned for the near future.

The first issue is the abstract data types and their generators of SDL. These data types must be
implemented on these resource limited platforms in a very efficient manner. Also a
methodology should be implemented, to notify the SDL system when there is no more space
left for storing more data.

Another important point is the reliability of SDL specifications. This is an issue that requires
further research. The possibility of creating a formal, static technique for analyzing a SDL
system with respect to the possibility of queue overflows should be evaluated and such a
technique eventually developed.

Also the timing issues must be further investigated in future. Maybe the SDL scheduler can be
adapted to support deadlines. [Kol00] did already integrate an earliest deadline first
scheduling into a SDL scheduler.

The possibilities of a tight integration, and also the pros and contras of using a preemption-
enabled kernel should be evaluated. The use of the SEnFPacket type should be documented,
probably by specifying a micro protocol [FGGS05].

9. Definition of important terms

This section lists and defines important terms that are used in this report.

SDL System

The SDL System is specified by the developer. It contains the functionality of the developed
system.

SDL Kernel

The SDL Kernel ships with the used code generator or with the used transformation
framework. The services that are contained in the SDL kernel may vary – together with the
SDL environment all necessary functions must be provided to execute the generated or
transformed SDL system.

SDL Environment

The SDL environment provides the connection of the SDL system to real hardware, or to
other processes as well as necessary services, that are not implemented in the SDL kernel.

SDL Engine

The SDL Engine is composed of the SDL Kernel and the SDL Environment and contains all
services that are necessary to execute a SDL system that has been generated with a specific
transformation method.

Generated SDL System

The generated SDL system is the SDL system that has been transformed by a transformation
method into native code and linked with the SDL Engine to form an executable.

10. References

[DRDK04]

D. Dietterle, J. Ryman, K. Dombrowski, R. Kraemer. Mapping of High-
Level SDL Models to Efficient Implementations for TinyOS. Euromicro
Symposium on Digital System Design (DSD'04), pp. 402-406, 2004.

[DSH99]

M. Doerfel, F. Slomka, R. Hofmann. A Scalable Hardware Library for the
Rapid Prototyping of SDL Specifications. Tenth IEEE International
Workshop on Rapid System Prototyping (RSP'99), 1999.

[DZM01]

C. Drosos, M. Zayadine, D. Metafas. Real-Time Communication Protocol
Development Using SDL for an Embedded System On Chip Based on ARM
Microcontroller. 13th Euromicro Conference on Real-Time Systems
(ECRTS'01), 2001.

[ADLPT99]

J. M. Alvarez, M. Diaz, L. Llopis, E. Pimentel, J.M. Troya. Embedded
Real-Time Systems Development Using SDL. In proceedings of IEEE Real-
Time System Symposium WIP sessions. RTSS'99, 1999.

[HSWHCP00]

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister. System
architecture directions for network sensors. ASPLOS 2000, Cambridge,
November 2000.

[WT04] T. Wroldsen, S. Tveitane. A Real Time Operating System for embedded
platforms. Masters Thesis at Agder University College in Norway.

[FGGS05]

I. Fliege, A. Geraldy, R. Gotzhein, P. Schaible: A Flexible Micro Protocol
Framework. In D. Amyot, A.W. Williams (Eds.), System Modeling and
Analysis, Lecture Notes in Computer Science 3319, Springer, 2005, pp.
224-236.

[KGGR05] T. Kuhn, A. Geraldy, R. Gotzhein, F. Rothländer. ns+SDL - The Network
Simulator for SDL Systems. 12. SDL Forum, Grimstad, Norway. June
2005.

[HD02] J. Hill and D. Culler. Mica: a wireless platform for deeply embedded
networks. IEEE Micro, 22(6): 12-24, November/December 2002.

[AHS02] E. Aarts, R. Harwig, M. Schuurmans. Ambient intelligence. The invisible
future: the seamless integration of technology into everyday life, Mc-Graw
Hill, 2002.

[Kol00] Thomas Kolloch. Code generation with SDL -- an integration with RTEMS
and message deadlines. Technical report TR-SDL00, Lehrstuhl für
Realzeit-Computersysteme, Technische Universität München, München,

Germany, January 2000.

[FG05a] I. Fliege, A. Geraldy, R. Gotzhein, T. Kuhn, C. Webel. Model-Driven
Engineering of Ambient Intelligence Systems with SDL: Design,
Implementation and Performance Simulation. Technical report 342/05,
University of Kaiserslautern, 2005.

[FG05b] I. Fliege, A. Geraldy, R. Gotzhein, T. Kuhn, C. Webel, C. Weber. Konzept
und Struktur des SDL Environment Frameworks. Technical report 341/05,
University of Kaiserslautern, 2005.

[KF05] T. Kuhn, I. Fliege. Micro-protocol based design of a highly adaptive and
integrated QoS MAC layer for Ambient Intelligence Systems. Technical
report 347/05, University of Kaiserslautern, 2005.

[Cin] Cinderella. http://www.cinderella.dk

[Tel] Telelogic. http://www.telelogic.com

[Pra] Pragmadev. http//www.pragmadev.com

[SDLRT] SDL-RT standard. http://www.sdl-rt.org/standard/V2.1/pdf/SDL-RT.pdf

[SDL100] SDL standard. http://www.sdl-forum.org/Publications/Standards.htm

	1. Introduction
	1.1. Motivation
	1.2. Domain description
	1.3. Our goals
	1.4. Scope of this report
	1.5. Related work
	1.6. Structure of this work

	2. Requirements and challenges
	2.1. Survey on available platforms
	2.2. Platform description
	2.3. Available code generators

	3. Requirements
	3.1.1. Functional requirements concerning hardware drivers
	3.1.2. Additional functional requirements to the runtime platform
	3.1.3. Non functional requirements to the runtime platform

	4. Design
	4.1. Notation
	4.2. Static structure
	4.3. SDL SEnF Driver
	4.4. SDL Environment Framework for micro controllers (µSEnF)
	4.4.1. Interface changes to SEnF
	4.4.2. Interfacing SDL with the environment
	4.4.3. Error handling

	4.5. Hardware abstraction layer

	5. Implementation
	5.1. Bare integration of the TAU CMicro runtime
	5.1.1. Expected functions from the runtime system
	5.1.2. Offered services to the runtime system

	5.2. Generic interfacing points between HAL and µSEnF
	5.2.1. Naming conventions for the interfacing points
	5.2.2. Radio communication
	5.2.3. Serial communication
	5.2.4. Light emitting diodes
	5.2.5. Access to unique ID
	5.2.6. Access to the analog/digital converters
	5.2.7. Access to the digital general purpose I/O

	6. Evaluation
	6.1. SDL Model
	6.2. Timing
	6.2.1. Reaction time on events
	6.2.2. Timer accuracy

	6.3. Reliability
	6.3.1. Causes for full queues
	6.3.2. Possible solution

	7. Conclusions
	8. Further work
	9. Definition of important terms
	10. References

