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Abstract. This report explains basic notions and concepts of Abstract State Machines (ASM) as well as notation 
for defining ASM models. The objective here is to provide an intuitive understanding of the formalism; for a 
rigorous definition of the mathematical foundations of ASM, the reader is referred to [2] and [3]. Further 
references on ASM-related material can be found on the ASM Web Pages [1]. 

1 INTRODUCTION 

The ASM model used to define the dynamic semantics of SDL is explained in several steps. Firstly, the basic 
ASM model with a single agent is treated (Section 2). Next, this model is extended to cover multi-agent systems 
(Section 3). Then, open systems, i.e. systems interacting with an environment they cannot control, are addressed 
by adding the notion of external world (Section 4). Finally, the model is extended by introducing a notion of 
real-time behaviour (Section 5). To illustrate these steps, an ASM model for a simple system is developed, step 
by step. The final ASM model of this system is listed in Section 6. Additional notation used to define the 
dynamic semantics of SDL is explained in Section 7. 

 
 

EXAMPLE (Informal Description): 

In order to illustrate the ASM model, a simple resource management system (RMS) consisting of a group of n 
> 1 agents competing for a resource (for instance, some device or service) is defined. Informally, this system 
is characterised as follows: 

• There is a set of m tokens, m< n, used to grant exclusive or non-exclusive (shared) access to the resource. 

• Depending on whether the desired access mode is exclusive or shared, an agent must own all tokens or one 
token, respectively, before he may access the resource. 

• An agent is idle when not competing for a resource, waiting when trying to obtain access to the resource, 
or busy while owning the right to access the resource. 

• Once an agent is waiting, it remains so until it obtains access to the resource. 

• A busy agent releases the resource when it is no longer needed, as indicated by a stop condition for that 
agent that is externally set. On releasing the resource, all tokens owned by the agent are returned. 

• Stop conditions are only indicated when an agent is busy. This is an integrity constraint on the behaviour 
of the external world. 

• Initially, all agents are idle, and all tokens are available. 

The system will be defined step by step, as the explanations of the ASM model proceed, starting with the 
basic ASM model with a single agent. The final ASM model of this system is listed in Section 6. 
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2 BASIC ASM MODEL 

An Abstract State Machine M is defined over a given vocabulary V by its states S, its initial states S0 ⊆ S, and its 
program P. These items will be explained in the following subsections. 

2.1 Vocabulary 
The vocabulary (or signature) V denotes a finite set of function names, predicate names, and domain names, each 
of a fixed arity. Names in V are classified as basic or derived, and further distinguished into static or dynamic 
(see Figure 1). The meaning associated with these classifications will be explained in subsequent subsections. 

names

  basic                                                             derived

static                         dynamic         s tatic                          dyna mic  
Figure 1: Classification of ASM Names 

V is declared when defining an ASM, except for a subset of predefined names. This subset includes, for instance, 
the equality sign, the 0-ary predicate names True, False, the 0-ary function name undefined, the domain names 
BOOLEAN, NAT and REAL, as well as the names of frequently used standard functions (such as Boolean operations 
∧, ∨, ¬, ⇒, ⇔, and set operations ⊆, ∪, ∩, ∈, ∉, etc.). Predefined names are listed in Section 7. 

 

EXAMPLE (Vocabulary):  

To define an ASM model of the system RMS, assume a vocabulary V including the following names: 

  static domain AGENT 
  static domain TOKEN 
  domain MODE 

  shared mode: AGENT → MODE 
  controlled owner: TOKEN → AGENT 
  static ag: → AGENT 

  Idle: AGENT → BOOLEAN 
  Waiting: AGENT → BOOLEAN 
  Busy: AGENT → BOOLEAN 
  Available: TOKEN → BOOLEAN 

  monitored Stop: AGENT → BOOLEAN 

The static domain names AGENT, TOKEN, and MODE are introduced to represent the (single) agent of the 
system, the set of tokens, and the different access modes (exclusive, shared), respectively. The names mode 
and owner denote dynamic functions, they are used to model the current access mode of an agent and the 
current owner of a token, respectively. The 0-ary function name ag refers to a value of the domain AGENT. 
Idle, Waiting, Busy, and Available are names of derived, dynamic predicates. Stop denotes a monitored 
predicate, which will be explained later. 
 

To declare names when defining a concrete ASM, we use the following notational conventions: 

• Domain names are written in capitalised italics (as in AGENT), except when denoting a non-terminal of the 
abstract grammar. Here, domain names are written as the non-terminals, i.e. in italics, hyphenated, and 
starting with a capital (as in AgentDefinition). A domain name D is declared by domain D. 
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• Function names are written in italics starting with a small letter (as in mode). A function name f is declared 
by f: D1×D2×...×Dn → D0, where n is the arity of f, and D0,D1,D2,...,Dn are domain names. 

• Predicate names are also written in italics, but starting with a capital letter (as in Available). A predicate 
name P is declared by P: D1×D2×...×Dn → BOOLEAN. 

• Basic static names are qualified by the keyword static, when they are declared (see Figure 1). 

• Basic dynamic names are qualified by one of the keywords controlled, shared, or monitored, when they 
are declared (as will be explained in Section 4). 

• Names without a preceding keyword are derived names by default (see Figure 1). 

2.2 States 
A state s ∈ S is given by assigning a meaning, also called interpretation, to the names in V over an infinite set, 
called the base set of M (to which we refer by the predefined domain name X).1 That is, to each domain name, 
function name, and predicate name in V, a basic domain, function or predicate is to be associated, respectively. 
The interpretation of derived names follows from the interpretation of basic names. Note that the base set is the 
same for all states of M. It is required that True, False and undefined denote distinct elements of the base set. 
Predefined operations have their usual interpretation. 

Recall that names are classified as static or dynamic. If classified as static, names are required to have the same 
interpretation in all states of M. Otherwise, they may have different interpretations in different states of M. Thus, 
the states S of M are given by the set of all interpretations of the names in V over the base set of M that comply 
with these and other explicitly stated constraints. 

Strictly speaking, all functions are total functions on the base set of M. To imitate partial functions, “undefined” 
function values are marked by the distinguished element undefined. Predicates only yield one of the values True 
or False, i.e., they must not be partial. 

Every state has a potentially infinite number of reserve elements allowing the dynamical extension of domains 
(see Section 2.6). By definition, the reserve elements of a state are all those elements of the base set that are 
neither identified by a function nor contained in one of the domains. 

2.3 Derived Names 
The meaning of derived names follows from the interpretation of basic names, and is defined in terms of 
formulae (see Section 7); derived names may therefore be understood as abbreviations. Let DerivedName be an 
n-ary name, and let Formula(v1,...,vn) denote a formula of the domain D with free variables v1,...,vn of domains 
D1,...,Dn, n ≥ 0. The general form of a derived name definition is: 

DerivedNameDefinition ::= DerivedName(v1:D1,...,vn:Dn):D =def Formula(v1,...,vn) 

The result domain D is omitted in case of a derived domain definition. 
 

EXAMPLE (Definitions): 

The following derived predicates are defined to refer to the status of an agent/token in a given state: 

  MODE =def   {exclusive, shared} 

  Idle(a:AGENT): BOOLEAN =def a.mode = undefined ∧ ∀t ∈ TOKEN: t.owner ≠ a 
  Waiting(a:AGENT): BOOLEAN =def a.mode ≠ undefined ∧ ∀t ∈ TOKEN: t.owner ≠ a 
  Busy(a:AGENT): BOOLEAN =def a.mode ≠ undefined ∧ ∃t ∈ TOKEN: t.owner = a 
  Available(t:TOKEN): BOOLEAN =def t.owner = undefined 

An agent a is, for instance, idle iff the function mode yields the value undefined for that agent, and a does not 
hold any token. A token t is available iff no agent is holding t. 
 

                                                           
1 Formally speaking, ASM states are (many-sorted) first-order structures. 
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For an improved readability, we use a “.”-notation for unary functions and predicates. For instance, we write 
a.mode, which is equivalent to writing mode(a). 

2.4 Initial States 
The set of initial states S0 ⊆ S is defined by constraints imposed on domains, functions, and predicates as 
associated with the names in V. The initial constraints for predefined domains and operations are given 
implicitly; see Section 7. Initial constraints have the following general form: 

initially ClosedFormula 
 

EXAMPLE (Initial States): 

The following constraints define the set of initial states of the system RMS: 

  initially AGENT = {ag} 
  initially ∀a ∈ AGENT: a.Idle ∧ ∀t ∈ TOKEN: t.Available 

The first constraint defines the initial set AGENT to consist of a single element ag. The second constraint 
expresses that initially, the agent of RMS is idle (a.mode = undefined), and all tokens are available (t.owner = 
undefined). Note that no constraint on Stop is defined. 
 

2.5 State Transitions and Runs 
Recall that a (global) state s ∈ S is given by an interpretation of the names in V over the base set of M. State 
transitions can be defined in terms of partial reinterpretations of dynamic domains, functions, and predicates. 
This gives rise to the notions of location as a conceptual means to refer to parts of global states, and of update to 
describe state changes. 

A location of a state s of M is a pair locs = <f, s(x)>, where f is a dynamic name in V, and s(x) is a sequence of 
elements of the base set according to the arity of f. An update of s is a pair δs = <locs, s(y)>, where s(y) identifies 
an element of the base set as the new value to be associated with the location locs. To fire δs means to transform s 
into a state s' of M such that fs'(s(x)) = s(y), while all other locations loc's of s, loc's ≠ locs, remain unaffected. In 
other words, firing an update modifies the interpretation of a state in a well-defined way. 

The potential behaviour of a basic ASM is captured by a program P, which is defined by a transition rule (see 
Sections 2.6 and 2.8). For each state s ∈ S, a program P of M defines an update set ∆s(P) as a finite set of 
updates of s. ∆s(P) is consistent, if and only if it does not contain any two updates δs, δ's such that δs = <locs, 
s(y)>, δ's = <locs, s(y')>, and s(y) ≠ s(y'). The firing of a consistent update set ∆s(P) in state s means to fire all its 
members simultaneously, i.e. to produce (in one atomic step) a new state s' such that for all locations locs = 
<f,s(x)> of s, fs'(s(x)) = s(y), if <<f,s(x)>,s(y)> ∈ ∆s(P), and fs'(s(x)) = fs(s(x)) otherwise, and is called state 
transition. Firing an inconsistent update set2 has no effect, i.e., s' = s. 

The behaviour of a single-agent ASM M is modelled through (finite or infinite) runs of M, where a run is a 
sequence of state transitions of the form 

 

 ∆s0(P)  ∆s1(P)  ∆s2(P)   moves 

s0 → s1 → s2 → ...  states 

such that s0 ∈ S0, and si+1 is obtained from si, for i ≥ 0, by firing ∆si(P) on si, where ∆si(P) denotes an update set 
defined by the program P of M on si (see Section 2.8). The meaning of an ASM is defined to be the set of all its 
runs. In the sequel, we restrict attention to runs starting in an initial state, also called regular runs. 

                                                           
2 In the context of the SDL semantics, an inconsistent update set indicates an error in the semantic model. The 
ASM semantics ensures that such errors do not destroy the notion of state. 
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2.6 Transition Rules 
Transition rules specify update sets over ASM states. Complex rules are formed from elementary rules using 
various rule constructors. The elementary form of transition rule is called update instruction. 

• update instruction 

Rule ::= f(t1,...,tn) := t0          (n ≥ 0) 

Here, f is a non-static name of V denoting either a controlled or a shared function, predicate or domain, and 
t0,t1,...,tn are terms over V identifying, for a given state s, the location loc = <f,<s(t1),..., s(tn)>> to be 
changed and the new value s(t0) to be assigned, respectively. In other words, the above update instruction 
specifies the update set {<<f,<s(t1),..., s(tn)>>, s(t0)>}, consisting of a single update. Note that only 
locations related to (non-static) basic names may occur at the left-hand side of an update instruction. 

 

EXAMPLE (Update Instruction): 

Let t be a variable denoting a token, and ag be an agent. 

  t.owner := ag    specifies the update set {<<owner, <s(t)>>, s(ag)>} 
  ag.mode := undefined specifies the update set {<<mode, <s(ag)>>, s(undefined)>} 
 

The construction of complex transition rules out of elementary update instructions is recursively defined by 
means of ASM rule constructors. For the ASM model applied to define the SDL semantics, six different 
constructors are used. These constructors are listed below, with an informal description of their meaning. Here, 
Rule, Rulei denote transition rules, g denotes a Boolean term, and v,v1,...,vn denote free variables over the base set 
of M. The scope of a rule constructor is expressed by appropriate keywords, and can additionally be indicated by 
indentation. The closing keywords can be omitted, if no confusion arises. If closing keywords are omitted, the 
corresponding constructor extends as much as possible, but not over the next where-clause. 

• if-then-constructor 

Rule ::= if g then 
    Rule1 
   [else 
    Rule2] 
   endif 

The update set specified by Rule in a given state s is defined to be the update set of Rule1 or Rule2, depending 
on the value of g in state s. Without the optional else-part, the update set defined by Rule is the update set of 
Rule1 or the empty update set. Sometimes, elseif is used as abbreviation for else if. 

• do-in-parallel-constructor 

Rule ::= [do in-parallel] 
    Rule1 
    ... 
    Rulen 
   [enddo] 

The update set defined by Rule in state s is defined to be the union of the update sets of Rule1 through Rulen. 
In other words, the order in which transition rules belonging to the same block are stated is irrelevant. For 
brevity, the keywords do in-parallel and enddo may be omitted, where no confusion arises. Hence, an ASM 
program often appears as a collection of rules rather than a monolithic block rule. 

• do-forall-constructor 

Rule ::= do forall v: g(v) 
    Rule0(v) 
   enddo 

The effect of Rule is that Rule0 is fired simultaneously for all elements v of the base set of M for which the 
Boolean condition g(v) holds in state s, where v is a free variable in Rule0. More precisely, ∆s(Rule) is the 
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union of all update sets ∆s(Rule0(v)) such that g(v) holds in state s. Recall that update sets are required to be 
finite, therefore, g(v) must hold for a finite number of values only. 

• choose-constructor 

Rule ::= choose v: g(v) 
    Rule0(v) 
   endchoose 

The effect of Rule is that Rule0 is fired for some element v of the base set of M for which the condition g(v) 
holds in state s, where v is a free variable in Rule0. More precisely, ∆s(Rule) is some update set ∆s(Rule0(v)) 
such that g(v) holds in state s, or the empty update set if no such v exists. 

• extend-constructor3 

Rule ::= extend D with v1,...,vn 
    Rule0(v1,...,vn) 
   endextend 

The effect of Rule when fired at state s is that n reserve elements of s (see Section 2.2) are imported into the 
dynamic domain D (while being removed from the reserve), that v1,...,vn become bound to one of the 
imported elements each, and then Rule0(v1,...,vn) is fired. 

The extend constructor can be used to mimic object-based ASM definitions, where objects are dynamically 
created. Thus, for each object to be created, an element from the reserve is assigned to the corresponding 
domain, and initialised. 

• let-constructor 

Rule ::= let v = expression in 
    Rule0(v) 
   endlet 

The effect of Rule when fired in some state s is that v is bound to the value of expression, and that Rule0 is 
fired with this value. 

 

EXAMPLE (Transition Rule): 

The following transition rule defines the behaviour of agent ag when requesting shared access, i.e. when 
ag.mode = shared. The rule applies the if-then-constructor, the choose-constructor, and an update instruction. 

  if ag.mode = shared ∧ ag.Waiting then 
   choose t: t ∈ TOKEN ∧ t.Available 
    t.owner := ag 
   endchoose 
  endif 

The precise meaning of the rule is given by its update set with respect to a state s, which is either {<<owner, 
<s(t)>>, s(ag)>} for some token s(t) available in s, if all further predicates stated in the if-then-constructor 
hold in s, or the empty update set otherwise. 
 

2.7 Abbreviations 
Rules can be structured using abbreviations, consisting of rule macros and derived names, that may have 
parameters. This allows for hierarchical definitions, and the stepwise refinement of complex rules, which 
supports the understanding of ASM model definitions. 

Derived names are introduced as explained in Sections 2.1 and 2.3, i.e. by declaration and definition, or 
alternatively, in the compact form, by combining declaration and definition. 

                                                           
3 Strictly speaking, extend can be defined in terms of the import constructor (not shown here); however, the 
import constructor is not used in this Recommendation. 
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• rule-macro-definition 

Let Rule0 denote a transition rule with free variables v1,...,vn of domains D1,...,Dn, n ≥ 0. The general form of 
a rule macro definition is: 

RuleMacroDefinition ::=  RuleMacroName(v1:D1,...,vn:Dn) ≡ 
          Rule0(v1,...,vn) 

Rule macro names are, by convention, written in small capitals, with a leading capital letter (as in 
SHAREDACCESS). 

• where-part 

By default, rule macros and derived names have a global scope. However, their scope can also be restricted 
to a particular transition rule Rule by using the where-part. 

Rule ::= Rule0 
    where 
     ( RuleMacroDefinition  |  DerivedNameDefinition )+ 
    endwhere 

• rule-macro-constructor 

Rule macros are applied in transition rules as follows: 

Rule ::= RuleMacroName(t1,...,tn) 

Formally, rule macros are syntactical abbreviations, i.e., each occurrence of a macro in a rule is to be 
replaced textually by the related macro definition (replacing formal parameters by actual parameters). 

 
 

EXAMPLE (Rule Macro): 

The transition rule from the previous example can be stated using rule macros, and be defined as a macro 
itself. Here, SHAREDACCESS is a macro definition with global scope that can be used in other places of the 
ASM model definition. GETTOKEN is a parameterised macro definition with a local scope restricted to the 
rule SHAREDACCESS, with formal parameter a. When GETTOKEN is applied in SHAREDACCESS, a is replaced 
by the actual parameter ag. 

SHAREDACCESS ≡ 
  if ag.mode = shared ∧ ag.Waiting then 
   GETTOKEN(ag) 
  endif 
  where 
    GETTOKEN(a:AGENT) ≡ 
      choose t: t ∈ TOKEN ∧ t.Available 
       t.owner := a 
      endchoose 
  endwhere 
 

 

2.8 ASM Programs 
An ASM program P is given by a framed transition rule (or rule for short) of the following form: 

Rule 

As already mentioned, rule macro definitions may either have a local or a global scope. To have a global scope, 
the macro definitions can be given outside the ASM program, and can thus also be applied in the ASM program. 

In the basic ASM model there is just one ASM program, which is statically associated with an implicitly defined 
agent executing this program. In the next section, we will allow to define several ASM programs, and associate 
them with different agents that are introduced dynamically during abstract machine runs. 
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EXAMPLE (ASM Program): 

The ASM program P of the system RMS is defined as follows: 

 do in-parallel 
  SHAREDACCESS 
  EXCLUSIVEACCESS 
  RELEASEACCESS 
 enddo 
 where 
   SHAREDACCESS ≡ 
     if ag.mode = shared ∧ ag.Waiting then 
      choose t: t ∈ TOKEN ∧ t.Available 
       t.owner := ag 
      endchoose 
     endif 
   EXCLUSIVEACCESS ≡ 
     if ag.mode = exclusive ∧ ∀t ∈ TOKEN: t.Available then 
      do forall t: t ∈ TOKEN 
       t.owner := ag 
      enddo 
     endif 
   RELEASEACCESS ≡ 
     if ag.Busy ∧ ag.Stop then 
      do in-parallel 
       ag.mode := undefined 
       do forall t: t ∈ TOKEN ∧ t.owner = ag 
        t.owner := undefined 
       enddo 
      enddo 
     endif 
 endwhere 

The ASM program is defined by a single transition rule as shown in the frame. The transition rule uses the 
do-in-parallel-constructor and 3 rule macros, which results in a hierarchical rule definition. 
 

3 DISTRIBUTED ASM 

Mathematical modelling of concurrent and reactive systems requires to extend the basic ASM model. In this 
section, the concept of distributed ASM, which generalises the basic ASM model presented in Section 2, is 
explained. 

A distributed Abstract State Machine M is defined over a given vocabulary V by its states S, its initial states S0 
⊆ S, its agents A, and its programs P. These items will be explained in the following subsections, as far as they 
differ from the basic ASM model. 

3.1 Vocabulary 
The vocabulary V of a multi-agent ASM M includes distinguished domain names 

controlled domain AGENT 
static domain PROGRAM 

representing a dynamic set A of agents and an invariant set P of ASM programs, respectively. Furthermore, V 
includes a distinguished function name 
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controlled program: AGENT → PROGRAM 

and a special 0-ary function Self (see Section 3.2). 

3.2 Agents and Runs 
A distributed ASM M may have any finite number of agents, where this number may vary dynamically 
depending on the given state. The behaviour of each agent is determined by some program of M, defined by a 
transition rule like in the basic ASM model. Agents operate concurrently by running their programs, and interact 
asynchronously through globally shared locations of a state, i.e. two or more agents may read and write the same 
location. Concurrent execution steps of the distributed ASM model are restricted to independent operations, 
where the admissible behaviour is defined in terms of partially ordered runs (see [2]). Intuitively, this notion of 
concurrency allows for true concurrency instead of approximating concurrency by an interleaving model. 

To assign a behaviour to an agent of M, the distinguished function program (see Section 3.1) yields, for each 
agent a of M, the program of P to be executed by a. The function program thus allows to define (or to redefine) 
the behaviour of agents dynamically; it is thereby possible to create new agents at run time. In a given state s of 
M, the agents of M are all those elements a of s such that a.program identifies a behaviour (as defined by some 
program of P) to be associated with a. 

A special 0-ary function Self serves as a self reference identifying the respective agent calling Self: 

monitored Self: → AGENT 

For every agent, Self has a different interpretation. By using Self as an additional function argument, each agent a 
can have its own partial view of a given global state of M on which it fires the rule in a.program. 

 
 

EXAMPLE (Scheme of a distributed ASM): 

In the following figure, a particular distibuted ASM M, consisting of three agents ag1, ag2, and ag3 is 
illustrated. The function program associates, with each agent, one of the ASM programs P1, P2, and P3. Here, 
ag1 and ag2 are assigned the same program. Program P2 is currently not associated with any agent, however, 
this may change during execution, as program is a dynamic function. Each agent has its own partial view on 
a given global state s of M, in which it fires the rule of its current program. In the figure, this view is 
illustrated by the function view, which yields, for each agent, its local and its shared state. In fact, the current 
view of each agent is determined implicitly by the ASM model definition, including the ASM programs. 

Agents

s
view(ag2,s) view(ag3,s)

ag1

ag2

ag3
ag1.program

ag2.program

ag3.program

view(ag1,s)
P3

P2

P1

Global State
Programs

 
 

The semantic model of concurrency underlying the distributed ASM model defines behaviour in terms of 
partially ordered runs. A partially ordered run represents a certain class of (admissible) machine runs by 
restricting non-determinism with respect to the order in which the individual agents may perform their 
computation steps, so-called moves.  To avoid that agents interfere with each other, moves of different agents 
need only be ordered if they are causally dependent (as detailed below). 
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Partially Ordered Runs 

Regarding the moves of an individual agent, these are linearly ordered, whereas moves of different agents need 
only be ordered in case they are not independent of each other. Intuitively, independent moves model concurrent 
actions which are incomparable with regard to their order of execution. The precise meaning of independence is 
implied by the coherence condition in the formal definition of partially ordered runs (adopted from [2]). 

A run ρ of a distributed ASM M is given by a triple (Λ,A,σ) satisfying the following four conditions: 

1. Λ is a partially ordered set of moves, where each move has only finitely many predecessors; 

2. A is a function on Λ associating agents to moves such that the moves of any single agent of M are linearly 
ordered; 

3. σ assigns a state of M to each initial segment Y of Λ, where σ(Y) is the result of performing all moves in Y; 
if Y is empty, then σ(Y) ∈ S0; 

4. if y is a maximal element in a finite initial segment Y of Λ and Z = Y – { y }, then A(y) is an agent in σ(Z) 
and σ(Y) is obtained from σ(Z) by firing A(y) at σ(Z)  (coherence condition). 

Implications 

Partially ordered runs have certain characteristic properties that can be stated in terms of linearisations of 
partially ordered sets. A linearisation of a partially ordered set Λ is a linearly ordered set Λ’ with the same 
elements such that if y < z in Λ then y < z in Λ’. Accordingly, the semantic model of concurrency as implied by 
the notion of partially ordered run can further be characterised as follows [2]: 

• All linearisations of the same finite initial segment of a run of M have the same final state. 

• A property holds in every reachable state of a run ρ of M if and only if it holds in every reachable state of 
every linearisation of ρ. 

3.3 Distributed ASM Programs 
A distributed ASM M  has a finite set P of programs. Each program p ∈ P is given by a program name and a 
transition rule (or rule for short). The program name uniquely identifies p within P, and is represented by a 
unary static function4. Programs are stated in the following form: 

ASM-PROGRAM: 
Rule 

Program names are, by convention, hyphenated and written in small capitals, with a leading capital letter (as in 
RESOURCE-MANAGEMENT-PROGRAM). 

By default, the following implicit constraint applies: 

 initially PROGRAM = {PROGRAM1,...,PROGRAMn} 

where PROGRAM1,...,PROGRAMn are the names of the programs that are defined in the ASM model. 

                                                           
4 Strictly speaking, the program names of M are represented by a distinguished set of elements from the base set. 
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EXAMPLE (ASM Program): 

The distributed ASM program of the system RMS defines a single program as follows: 

 RESOURCE-MANAGEMENT-PROGRAM: 
 do in-parallel 
  SHAREDACCESS 
  EXCLUSIVEACCESS 
  RELEASEACCESS 
 enddo 
 where 
   SHAREDACCESS ≡ 
     if Self.mode = shared ∧ Self.Waiting then 
      choose t: t ∈ TOKEN ∧ t.Available 
       t.owner := Self 
      endchoose 
     endif 
   EXCLUSIVEACCESS ≡ 
     if Self.mode = exclusive ∧ ∀t ∈ TOKEN: t.Available then 
      do forall t: t ∈ TOKEN 
       t.owner := Self 
      enddo 
     endif 
   RELEASEACCESS ≡ 
     if Self.Busy ∧ Self.Stop then 
      do in-parallel 
       Self.mode := undefined 
       do forall t: t ∈ TOKEN ∧ t.owner = Self 
        t.owner := undefined 
       enddo 
      enddo 
     endif 
 endwhere 

The program of the distributed ASM has the name RESOURCE-MANAGEMENT-PROGRAM, and is defined as 
the single-agent ASM program before, with one difference: all occurrences of ag have been replaced by calls 
of the function Self. This allows to associate the program with different agents, while accessing the local state 
of these agents. 
 

4 THE EXTERNAL WORLD 

Following an open system view, interactions between a system and the external world, e.g. the environment into 
which the system is embedded, are modelled in terms of various interface mechanisms. Regarding the reactive 
nature of distributed systems, it is important to clearly identify and precisely state 

• preconditions on the expected behaviour of the external world, and 

• how external conditions and events affect the behaviour of an ASM model. 

This is achieved through a classification of dynamic ASM names into three basic categories of names, which 
extends the classification of names shown in Figure 1: 

• controlled names 

These domains, functions or predicates can only be modified by agents of the ASM model, according to the 
executed ASM programs. Controlled names are preceded by the keyword controlled at their point of 
declaration, and are visible to the environment. 
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• monitored names 

These domains, functions or predicates can only be modified by the environment, but are visible to ASM 
agents. Thus, a monitored domain, function or predicate may change its values from state to state in an 
unpredictable way, unless this is restricted by integrity constraints (see below). Monitored names are 
preceded by the keyword monitored at their point of declaration. 

• shared names 

These domains, functions or predicates are visible to and may be altered by the environment as well as by 
the ASM agents. Therefore, an integrity constraint on shared domains, functions or predicates is that no 
interference with respect to mutually updated locations must occur. Hence, it is required that the 
environment itself acts like an ASM agent (or a collection of ASM agents). Shared names are preceded by 
the keyword shared at their point of declaration. 

names

  basic                                                             derived

                 static                   dynamic               static                    dynamic

                               controlled       shared      monitored
 

Figure 2: Extended classification of ASM names 

 

EXAMPLE (External World):  

The vocabulary V of the system RMS is extended by a classification of dynamic functions and predicates:  

  shared mode:   AGENT → MODE 
  controlled owner: TOKEN → AGENT 

  monitored Stop:  AGENT → BOOLEAN 

The function mode, which determines the current access mode, is shared. It may be affected by externally 
controlled ‘set’ operations, switching it to one of the values exclusive or shared. Furthermore, it is reset 
internally when the resource is released (see Section 3.3). 

The predicate Stop represents an external stop request, such as an interrupt, and therefore is monitored. 
 

In general, the influence of the environment on the system through shared and monitored names may be 
completely unpredictable. However, preconditions on the expected environment behaviour may be expressed by 
stating integrity constraints, which are required to hold in all states and runs of M. Note that integrity constraints 
merely express preconditions on the environment behaviour, but not properties the system is supposed to have.  

Integrity constraints are stated in the following form: 

IntegrityConstraint ::= constraint ClosedFormula 
 

EXAMPLE (Integrity Constraints): 

The following integrity constraint states that stop requests are only generated for busy agents: 

  constraint ∀a ∈ AGENT: (a.Stop ⇒ a.Busy) 
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5 REAL-TIME BEHAVIOUR 

By introducing a notion of real time and imposing additional constraints on runs, we obtain a specialised class of 
ASMs, called distributed real-time ASM, with agents performing instantaneous actions in continuous time. 
Essentially, that means that agents fire their rules at the moment they are enabled. 

To incorporate real-time behaviour into the underlying ASM execution model, we introduce a 0-ary monitored 
real-valued function currentTime. Intuitively, currentTime refers to the physical time. As an integrity constraint 
on the nature of physical time, it is assumed that currentTime changes its values monotonically increasing over 
ASM runs. 

monitored currentTime: → REAL 

Consider a given vocabulary V containing REAL (but not currentTime) and let V+ be the extension of V with the 
function symbol currentTime. Restrict attention to V+-states where currentTime evaluates to a real number. One 
can then define a run R of the resulting machine model as a mapping from the interval [0,∞) to states of 
vocabulary V+ satisfying the following discreteness requirement, where σ(t) denotes the reduct5of R(t) to V: 

1. for every t ≥ 0, currentTime evaluates to t at state R(t); 

2. for every τ > 0, there is a finite sequence 0 = t0 < t1 <…< tn = τ such that if ti < α < β < ti+1 then σ(α) = σ (β). 

Exploiting the discreteness property, one effectively obtains some finite representation (history) for every finite 
(sub-) run by abstracting from those states which are not considered as significant such that they contribute any 
relevant information to a behaviour description. In particular, one can simply ignore all states which are identical 
to their preceding state except that currentTime has increased. From the above definition of run it follows that 
only finitely many states are left. 

6 EXAMPLE: THE SYSTEM RMS 

In this section, we assemble the pieces of the ASM model definition of the system RMS into their final version. 
For better reference, we also repeat the informal description. 

Informal Description 

In order to illustrate the ASM model, a simple resource management system RMS consisting of a group of n > 1 
agents competing for a resource, for instance, some device or service, is defined. Informally, this system is 
characterised as follows: 

• There is a set of m tokens, m < n, used to grant exclusive or non-exclusive (shared) access to the resource. 

• Depending on whether the desired access mode is exclusive or shared, an agent must own all tokens or one 
token, respectively, before he may access the resource. 

• An agent is idle when not competing for a resource, waiting when trying to obtain access to the resource, or 
busy when owning the right to access the resource. 

• Once an agent is waiting, it remains so until it obtains access to the resource. 

• A busy agent releases the resource when it is no longer needed, as indicated by a stop condition for that 
agent that is externally set. On releasing the resource, all tokens owned by the agent are returned. 

• Stop conditions are only indicated when an agent is busy. 

• Initially, all agents are idle, and all tokens are available. 

                                                           
5 That is, for a given value t, we obtain σ(t) from R(t) by ignoring the interpretation of the function name 
currentTime. 
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Vocabulary 

static domain TOKEN 

shared mode: AGENT → MODE 
controlled owner: TOKEN → AGENT 

monitored Stop: AGENT → BOOLEAN 

Derived Names 

MODE =def {exclusive, shared} 

Idle(a:AGENT): BOOLEAN    =def a.mode = undefined ∧ ∀t ∈ TOKEN: t.owner ≠ a 
Waiting(a:AGENT): BOOLEAN   =def a.mode ≠ undefined ∧ ∀t ∈ TOKEN: t.owner ≠ a 
Busy(a:AGENT): BOOLEAN   =def a.mode ≠ undefined ∧ ∃t ∈ TOKEN: t.owner = a 
Available(t:TOKEN): BOOLEAN =def t.owner = undefined 

Integrity Constraints 

constraint ∀a ∈ AGENT: (a.Stop ⇒ a.Busy) 

Initial Constraints 

initially |AGENT| > 1 
initially | TOKEN | < |AGENT| 
initially ∀a ∈ AGENT: a.program = RESOURCE-MANAGEMENT-PROGRAM 
initially ∀a ∈ AGENT: a.Idle ∧ ∀t ∈ TOKEN: t.Available 

ASM Programs 

RESOURCE-MANAGEMENT-PROGRAM: 
 

do in-parallel 
  SHAREDACCESS 
  EXCLUSIVEACCESS 
  RELEASEACCESS 
enddo 
where 
  SHAREDACCESS ≡ 
    if Self.mode = shared ∧ Self.Waiting then 
     choose t: t ∈ TOKEN ∧ t.Available 
      t.owner := Self 
     endchoose 
    endif 
  EXCLUSIVEACCESS ≡ 
    if Self.mode = exclusive ∧ ∀t ∈ TOKEN: t.Available then 
     do forall  t: t ∈ TOKEN 
      t.owner := Self 
     enddo 
    endif 
  RELEASEACCESS ≡ 
    if Self.Stop then 
     Self.mode := undefined 
     do forall t: t ∈ TOKEN ∧ t.owner = Self 
      t.owner := undefined 
     enddo 
    endif 

endwhere 
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7 PREDEFINED NAMES 

To define an ASM model, certain names and their intended interpretation are predefined. These names are 
grouped and listed in this section (where D refers to the syntactic category of domains). For prefix, infix and 
postfix operators, an underline (“_”) is used to indicate the position of their arguments. Moreover, the 
precedence of the operators is indicated by prec(n), where n is a number. Higher numbers mean tighter binding. 
Monadic operators have a tighter binding than binary ones. Binary operators are associative to the left. 

 
ASM-specific Domains  
static domain X ASM base set (meta domain) 
static domain BOOLEAN Boolean values 
static domain NAT Integer values 
static domain REAL Real values 
shared domain AGENT ASM agents 
static domain PROGRAM ASM programs 
static domain TOKEN Syntax tokens (character strings) 
_ * Domain constructor: finite sequences of 
_ + Domain constructor: non-empty, finite sequences of 
_ -set Domain constructor: finite sets of 
_ × _   prec(7) Tuple domain constructor 
_ ∪ _   prec(6) Union domain constructor 
 
ASM-specific Functions  
static undefined: → X Indicator for undefined values 
monitored Self: → AGENT Self reference for ASM agents 
controlled program: AGENT → PROGRAM Program of an ASM agent 
monitored currentTime: → REAL The current system time. 
 
Boolean Functions and Predicates  
static True: → BOOLEAN Predefined literal. 
static False: → BOOLEAN Predefined literal 
_ = _   prec(4) Equality 
_ ≠ _   prec(4) Inequality 
_ ∧ _   prec(3) Logical and 
_ ∨ _   prec(2) Logical or 
_ ⇒ _   prec(1) Implication 
_ ⇔ _   prec(1) Logical equivalence 
¬ _ Negation 
∃x ∈ D: P(x)   prec(0) Existential quantification (at least one element) 
∃!x ∈ D: P(x)   prec(0) Unique existential quantification (exactly one element) 
∀x ∈ D: P(x)   prec(0) Universal quantification 
 
Terms  
X 0-ary function application 
f(t1,..., tn) Function application with n argument expressions 
if Formula then Term else Term endif Conditional expression; again we use elseif instead of else if 
s-_(_) Tuple selection function (see Tuples below) 
mk-_(...) Tuple construction (see Tuples below) 
inv-_(...) The inverse of a function or map,  

inv-Fun(x) =def take({ a ∈ D: Fun(a) =x }) 
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Functions and Relations on Integers  
_ > _, _ ≥ _, _ <_ , _ ≤ _   prec(4) Comparison operators 
_ + _   prec(6) Addition 
_ - _   prec(6) Subtraction 
_ *_   prec(7) Multiplication 
_ / _   prec(7) Division 
0, 1, ... Integer literals 
 
Functions on Sequences  
static empty: → D * Empty sequence 
static head: D * → D Head of the sequence (undefined when empty) 
static tail: D * → D * Tail of the sequence (undefined when empty) 
static last: D * → D Last element of a sequence (undefined when empty) 
static length: D* → NAT Length of a sequence 
static < >: D n → D *   Sequence constructor; arguments are listed inside the brackets, 

separated by commas 
_ ∩ _   prec(6) Concatenation of sequences 
toSet: D * → D-set Conversion of the elements of a sequence into a set. 
_ [ _ ] Access an element of a list; the index within the brackets must be of 

type NAT 
_ in _   prec(4) Element of? 
< <result> | <var> in <seq> : <cond> > Sequence comprehension; acts like a filter on <seq>, i.e. order-

preserving 
< <var> in <seq> : <cond> > =def  
     < <var> | <var> in <seq> : <cond> > 

Abbreviated sequence comprehension 

< <result> | <var> in <seq> > =def  
     < <result> | <var> in <seq> : True > 

Abbreviated sequence comprehension 

 
Functions on Sets  
_ ∪ _   prec(6) Set union 
_ ∩ _   prec(7) Intersection 
_ \ _   prec(6) Set subtraction 
_ ∈ _   prec(4) Element of? 
_ ∉ _   prec(4) Not element of? 
_ ⊆ _   prec(4) Subset of? 
_ ⊂ _   prec(4) Proper subset of? 
| _ | Size of a set 
U _ Big union: union of all sets included within the argument set 
∅ Empty set 
static { }: D n → D-set   Set constructor; comma-separated list of arguments in the brackets 
take: D-set → D Select an arbitrary element from the set, or undefined for an empty set 
_ .. _   prec(5) Integer range from the first value to the second. Empty set when the 

second expression is smaller than the first one. 
{ <result> | <var> ∈ <set> : <cond> } Set comprehension, acts like a filter on <set> 
{ <var> ∈ <set> : <cond> } =def  
     { <var> | <var> ∈ <set>: <cond> } 

Abbreviated set comprehension 

{ <result> | <var> ∈ <set> } =def  
     { <result> | <var> ∈ <set>: True } 

Abbreviated set comprehension 

Patterns and Case-expressions 

Patterns provide a means to easily access the structure of values. The following patterns are provided: 

• Variables: A variable matches any value. However, if the variable is already bound, it only matches itself. 

• Anonymous variables: Anonymous variables are denoted by “*”. They are a shorthand for introducing an 
unused variable. 

• Constructor: A constructor is given by its name and the arguments, that are again patterns. It matches any 
value that is constructed using that constructor and with the arguments matching their corresponding pattern. 
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• Named Pattern: The notation Variable = Pattern introduces a name for (the value matching) the pattern. 

Patterns are used to describe functions on the syntax tree. The non-terminal names of the grammar are used as 
the constructor functions. 

A case expression is used to determine a value depending on pattern matching. 

CaseExpression ::= case Term of 
       | Pattern1: Term1 
       | Pattern2: Term2 
       ... 
       [ otherwise Term0 ] 
      endcase 

If the value of Term matches at least one Patterni, then the result of the case expression is given by the Termi. If 
no pattern matches, the result is Term0 (if present). Otherwise, the result is undefined. 

Union Domains 

Union domains simply contain the values of their constituent domains. 

D =def D1 ∪ D2 

Tuples 

For every declared tuple domain, several implied constructor and selector functions are defined. A definition  

D =def D1 × D2
* × D3-set × D1 × (D1 ∪ D2) 

also defines the following functions: 

mk-D: D1 × D2
* × D3-set × D1 × (D1 ∪ D2) → D 

s-D1: D → D1 
s-D2-seq: D → D2

* 
s-D3-set: D → D3-set 
s2-D1: D → D1 
s-implicit: D → (D1 ∪ D2) 

When the tuple includes the same domain more than once, selector functions similar to s2-D1 are defined. For 
union, the special selector function s-implicit is defined. 

Abstract Syntax Rules 

Abstract syntax rules from a language definition are directly translated to the ASM notation, using certain 
conventions that will be explained by examples. Basically, an abstract syntax rule can be understood as declaring 
one or more (tuple) domains, and defining functions to construct and select values of the component domains. 
However, syntax nodes have an identity as opposed to ordinary tuples. There are syntax rules introducing named 
constructors as well as named and unnamed unions. Rules introducing constructors are composed of terminal 
and non-terminal symbols, they have the form 

Symbol :: Symbol1  Symbol2
+  Symbol3-set  [Symbol4] 

which is translated to 
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Symbol-aux =def Symbol1 × Symbol2
* × Symbol3-set × Symbol4 

controlled domain Symbol 
controlled contents-Symbol: Symbol → Symbol-aux 
s-Symbol1(x: Symbol): Symbol1 =def s-Symbol1(x.contents-Symbol) 
s-Symbol2-seq(x: Symbol): Symbol2

* =def s-Symbol2-seq(x.contents-Symbol) 
s-Symbol3-set(x: Symbol): Symbol3-set =def s-Symbol3-set(x.contents-Symbol) 
s-Symbol4(x: Symbol): Symbol4 =def s-Symbol4(x.contents-Symbol) 

Moreover, there is an abbreviation mk-Symbol. This abbreviation amounts to creating a new object of domain 
Symbol using the extend primitive and to set the contents-Symbol value of the newly produced object to the 
result of mk-Symbol-aux. Note that this kind of abbreviation is not a function, but in fact a rule item. Therefore, 
it must be used only within rules. The fact that the optional Symbol4 is not present is expressed in the ASM 
model by leaving the corresponding value undefined. 

An empty sequence of symbols (constructor with no parts) is denoted by ( ). 

The equality for syntax values is always a structural equality, i.e. the contents of the symbols are compared 
instead of the symbols themselves. 

The syntax rules introducing named unions, i.e., synonyms, have the form 

Symbol = Symbol1 | Symbol2 | ... | Symboln  (n ≥ 1) 

which is translated to 

Symbol =def Symbol1 ∪ Symbol2 ∪...∪ Symboln 

Note that since Symbol is a union domain, the expansion yields a domain definition, but no functions mk- or s-. 

In some cases, it is not necessary to refer to synonyms. Here, unnamed unions may be introduced by 

Symbol :: Symbol1 { Symbol21 | ... | Symbol2n } 

instead of introducing synonyms: 

Symbol :: Symbol1 Symbol2 
Symbol2 = Symbol21 | ... | Symbol2n  

For each keyword KEYWORD, there is an associated keyword domain Keyword with just one value: 

static domain Keyword 

It is required that all keyword domains are mutually disjoint. 

Given the abstract grammar, there is a derived domain called DefinitionAS1, which is composed of all abstract 
syntax symbol domains as follows: 

DefinitionAS1 =def Symbol1 ∪ Symbol2 ∪...∪ Symboln 

where Symbol1,Symbol2,...,Symboln is the list of all terminal and non-terminal symbols of the abstract grammar. 

There is a similar domain DefinitionAS0 for the concrete grammar (AS0). 

To navigate downward in a given abstract syntax tree, the functions s- can be used. To navigate upward, two 
parent functions are defined. 

controlled parentAS1: DefinitionAS1 → DefinitionAS1 
controlled parentAS0: DefinitionAS0 → DefinitionAS0 

Moreover, two functions are defined to find the parent of a particular kind. 
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parentAS0ofKind(from: DefinitionAS0, x: DefinitionAS0-set): DefinitionAS0 =def 
 if from = undefined then undefined 
 elseif from ∈ x then from 
 else parentAS0ofKind(from.parentAS0, x) 
 endif 
parentAS1ofKind(from: DefinitionAS1, x: DefinitionAS1-set): DefinitionAS1 =def 
 if from = undefined then undefined 
 elseif from ∈ x then from 
 else parentAS1ofKind(from.parentAS1, x) 
 endif 

The functions isAncestorAS1 and isAncestorAS0 determine if the first node is an ancestor of the second one: 

isAncestorAS1(n: DefinitionAS1 ,n': DefinitionAS1): BOOLEAN =def 
n = n'.parentAS1 ∨ isAncestorAS1(n, n'.parentAS1) 

isAncestorAS0(n: DefinitionAS0 ,n': DefinitionAS0): BOOLEAN =def 
n = n'. parentAS0 ∨ isAncestorAS0(n, n'.parentAS0) 

The top node of the current abstract or concrete syntax tree is denoted by the following 0-ary functions: 

controlled rootNodeAS1: → DefinitionAS1 
controlled rootNodeAS0: → DefinitionAS0 

The abstract syntax tree can be modified using the following derived function: 

replaceInSyntaxTree: DefinitionAS0 × DefinitionAS0 × DefinitionAS0 → DefinitionAS0 

The first parameter of the function is the old sub-tree, the second one is the new sub-tree and the third parameter 
is the old tree. The function returns the new tree, where all old sub-trees are replaced by the new sub-tree. 
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