
Micro Protocol Design: The SNMP Case Study 1

Reinhard Gotzheina, Ferhat Khendekb, Philipp Schaiblea

aComputer Science Department, University of Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

{gotzhein,schaible}@informatik.uni-kl.de

bECE Department, Concordia University,
1455, de Maisonneuve W., Montreal (P.Q.), Canada H3G 1M8

khendek@ece.concordia.ca

Abstract. Today, reuse in software engineering is usually supported by component libraries, such
as Java packages. Components are self-contained, ready-to-use building blocks, which are selected
and composed. They are usually associated with the implementation phase, a result of practical ex-
perience rather than of existing limitations. In this paper, we shed some new light on the concept of
components from the protocol engineering point of view. In particular, we describe a conceptual
framework for the protocol design phase, and introduce a specific type of protocol design compo-
nents called micro protocols. We then instantiate and apply this framework to a subset of SNMP,
the Simple Network Management Protocol, using SDL as design language.

Keywords: protocol engineering, reuse, components, micro protocols, formal methods, SDL

1. Introduction

Reuse of solutions and experience for recurring system development problems plays a key role for
quality improvement and an increase in productivity. As a prerequisite, the problems and their so-
lutions have to be in some sense “similar”. These similarities should not be understood as purely
syntactical, rather, semantical and conceptual similarities should be considered as well, which re-
quires precise domain knowledge and some creativity. Reuse has been studied thoroughly in soft-
ware engineering, which has led to the distinction of three main reuse concepts [5], namely
components, frameworks, and patterns. It should be emphasized that these reuse concepts can be
applied together, for instance, by defining a component framework [11] such as CORBA or
DCOM+ and adding components, or by using patterns to define components used in a component
framework. In this paper, we are concerned with components.

Components are self-contained, ready-to-use building blocks, which are selected from a component
library and composed. As a component is usually defined by a piece of code, this reuse concept is
strongly implementation-oriented. Being a syntactically complete code fragment, a component has
to be used as it comes. Therefore, design for independence [11], for instance, by suitable parame-
terization, is an important issue here, as well as the definition of suitable “glue” to compose com-
ponents.

1. This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of Sonderforschungsbereich
(SFB) 501, Development of Large Systems with Generic Methods.

2

The focus of our current work is on reuse in protocol engineering. It is a matter of fact that reuse
in this otherwise well-understood domain has not been very successful in the past. Still, protocol
design usually starts from scratch. In [1] and [2], we have shown how the design pattern idea can
be applied to communication protocols. More specifically, we have introduced the notion of SDL
pattern, which combines the advantages of the pattern idea and the use of a formal design language,
we have developed a pattern pool and a pattern-oriented design process, and have applied our ap-
proach to the design and re-design of several real-life communication protocols.

In this paper, we describe and apply the concept of protocol components, i.e., self-contained, ready-
to-use building blocks for communication systems development. Earlier results on protocol com-
ponents have been reported in [8] (F-CCS), [6] (Da Capo) and [12] (HORUS). All these approaches
are on code reuse. The early development phases including protocol design are not supported. In
HORUS, the components are functions. Some of these functions are self-contained, but others are
not self-contained and are always composed with other components. In the following, we describe
a conceptual framework for the protocol design phase, and define a specific type of protocol com-
ponent called micro protocol (Section 2). In Section 3, we survey the support of SDL-2000 for the
definition and composition of micro protocols. We then apply our framework to a subset of SNMP,
the Simple Network Management Protocol (Section 4), and draw some conclusions (Section 5).

2. The concept of ‘Micro Protocol’

In this section, we introduce a specific type of protocol (design) component called micro protocol,
and a corresponding communication system architecture. To start with, we revisit the notion of
communication protocol, which then is refined into protocol components. We draw a clear distinc-
tion between a concept (such as service or protocol) and its specification.

• A communication system is a system providing a meaningful, self-contained communication
service to a set of users, using a suitable communication protocol. Depending on the amount of
visible detail, we distinguish between service level and protocol level.

• A communication service consists of a service architecture, service users constraints, service
provider guarantees and service formats for the exchange of data from the service users’ point
of view.

• A communication protocol consists of a protocol architecture, a set of protocol rules, and pro-
tocol formats for the exchange of data from the service provider’s point of view:

- A protocol architecture defines the agents (service users, protocol entities, lower service
provider) as well as their common interaction points. The protocol architecture refines the
service architecture.

- Protocol rules capture the legal behavior of protocol entities in a self-contained way, i.e.,
without relying on any assumptions about the environment, consisting of the service users,
the lower service provider and the other protocol entities.

- Protocol formats define the set of values that may be exchanged between protocol entities
and their local environment, consisting of service users and lower service provider.

3

From this discussion, it follows that a communication protocol can be defined independently of the
lower communication service. However, the service provided by the set of protocol entities depends
on the lower communication service as well as on the service constraints.

Communication systems can be structured into smaller constituents in different ways. A communi-
cation component is a self-contained, ready-to-use building block of a communication system. Var-
ious kinds of communication components can be distinguished, depending on the point of view of
the communication systems engineer:

• A protocol functionality is a single aspect of internal protocol entity behavior (operational
structuring), e.g., flow control, error control. It is realized by a particular protocol mechanism
(e.g., sliding-window, rate control, checksum), and generally distributed among a set of proto-
col entities. We demand that there be no further decomposition into smaller functionalities.

• A protocol collaboration is a self-contained subset of synchronization and causality relation-
ships of a set of protocol entities.

• A protocol phase is a stage of protocol execution (temporal structuring), e.g. connection setup,
data transfer, connection release.

• A micro protocol is a communication protocol with one protocol functionality and the required
protocol collaboration. Because a protocol functionality covers only one single aspect of pro-
tocol behavior, a micro protocol is not decomposable.

• A macro protocol is the composition of micro and/or macro protocols.

• A (micro/macro) protocol entity is an agent following a (micro/macro) protocol.

• A protocol layer is a complete set of protocol entities following the same protocol.

The composition of communication components may require specific kinds of “glue”. For instance,
collaborations can be composed sequentially, concurrently, or exclusively (see [7]). The variety of
communication components gives rise to corresponding communication system architectures, in-
cluding the aforementioned service and protocol architecture:

• protocol-functionality-based architecture: protocol functionality instances as building blocks
(fine granularity)

• protocol-collaboration-based architecture: protocol collaboration instances as building blocks
(medium granularity, system view)

• protocol-phase-based architecture: structuring into protocol phases

• protocol-entity-based architecture: protocol entities as building blocks

• micro-protocol-based architecture: micro protocols as building blocks

• layered communication system architecture (“protocol stack”): sequence of protocol layers,
e.g., TCP/IP-protocol stack

• hierarchical communication system architecture: nested set of communication systems

A protocol specification describes a protocol either explicitly, i.e., by directly stating the protocol
architecture, the protocol rules and the protocol formats, or implicitly, for instance, by operationally
defining protocol entity types that follow the protocol rules. In the following, we specify protocols
operationally, as this is more common.

4

3. Language Support of SDL-2000

Design components are directly supported by SDL types contained in SDL packages, which fol-
lows the approach of object-oriented class libraries. With SDL being an object-oriented description
technique itself, this is straightforward. So, is this already the language solution we are looking for?

The answer to this question is best given by expressive feasibility studies. What we need is the abil-
ity to specify a particular kind of component, namely micro protocols. Can these be captured by
SDL types? And if yes, can we compose them into functionally complete communication proto-
cols? What kind of glue will be needed, and is SDL sufficiently expressive in this respect, too?

In this section, we explain in a generic way how we intend to apply SDL-2000 [4] to specify and
compose micro protocols. As it turns out, this has substantial advantages as compared to SDL-96.
However, due to the lack of tool support, we have used SDL-96 in the case study in Section 4.

A micro protocol is specified operationally by defining protocol entity types that follow the proto-
col rules such that one protocol functionality and the required collaboration among protocol entity
instances are covered. Methodologically, protocol functionalities and corresponding collaborations
are isolated first, and then represented in SDL.

Our first conceptual design decision is to model protocol entities by asynchronously communicat-
ing extended Mealy machines. Obviously, there are several ways to represent them in SDL, for in-
stance, by specifying SDL block types, SDL process types, or SDL composite state types. Which
one to use depends on the composition of micro protocols, which depends on the protocol that is to
be configured. For instance, composite states can be used in state aggregations, which can express
a mutually exclusive composition while sharing local variables. They can also be used in composite
state graphs, expressing a sequential composition, possibly with iterations. To express pipelining
among micro protocol entities, blocks and processes connected by channels can be used.

As the library of micro protocols should be as generic as possible, the composition of components
should not be constrained at this point. Therefore, we choose the most general form and decide to
define, for each micro protocol, a set of composite state types grouped in a package with the name

package MicroProtocolXY 1(1)
SIGNAL ...;
DCL ...;

MicroProtEntity1 MicroProtEntity2 MicroProtEntityN...

Figure 1: Generic SDL representation of a micro protocol

5

of the micro protocol. These state types can then be instantiated in SDL blocks, processes, compos-
ite states and state aggregations. Figure 1 shows a generic example, where MicroProtocolXY con-
sisting of composite state types MicroProtEntity1 through MicroProtEntityN is defined. In case of a
symmetrical micro protocol, there is just one composite state type. Additionally, some declarations
may be needed. Packages can be hierarchically structured, thus forming a library of individual mi-
cro protocols.

Once a micro protocol library is available, we can select and compose suitable micro protocols such
that the resulting protocol is self-contained and functionally complete. As we are dealing with com-
ponents, no adaptation will be necessary. However, the composition will be highly dependent on
the functionality to be provided, which requires background knowledge of the protocol engineer
that can not simply be expressed in SDL. Once the necessary composition has been determined, we
can again use SDL as the language means to express it. Figure 2 illustrates the proceeding: the pack-
ages defining the selected micro protocols are imported, and the types contained in these packages
are instantiated “suitably”. As discussed before, this could mean to use the composite state types in
SDL block types, process types, or to define aggregate states or composite state graphs, depending
on the composition style. The additional SDL constructs used here can be understood as “compo-
sition glue”. This glue includes block types and process types acting as micro protocol containers,
as well as SDL channels introduced to express pipelining. In our case studies so far, we have found
that even further transitions may be needed, which may be triggered by exceptions raised by spe-
cific micro protocol entities [3].

use MicroProtocolXY,

system XYZ 1(1)

ProtEntity1 ProtEntity2

protEntity1:
ProtEntity1

protEntity2:
ProtEntity2

c1
(A)

g1 g2 c2
g3

use MicroProtocolYZ;

(D)(B) (C)

Figure 2: Generic micro protocol composition

...

6

4. The SNMP Case Study

In this section, we will illustrate our methodology through the SNMP (Simple Network Manage-
ment Protocol) [9] [10]. This protocol has been developed and is being maintained by IETF. It has
evolved from version one to version three through the addition of new functionalities. In this paper,
we focus on SNMPv1.

Figure 3: SNMPv1 architecture

The SNMP protocol as such defines the collaborations and exchange formats between a manager
and an agent. It is based on a certain number of MIBs (Management Information Bases) that define
the management information, i.e. the semantics of data exchanged between a manager and an agent.
This information is organized into groups, forming a tree structure. The leaves represent variables
to be exchanged between managers and other agents. An agent is responsible of the part of the tree
that corresponds to its resource(s).

An SNMP manager communicates with a certain number of agents. A manager may request infor-
mation from an agent, which basically consists of obtaining the current values of specific variables.
The manager may also set the values of certain variables to control the corresponding resource. For
instance, the manager may ask the agent to set the values of variables in a routing table in order to
influence routing decisions, or to respond to network congestion. An agent may send traps to a man-
ager to inform him of an emergency, such as a severe fault. An architectural view of the protocol is
given in Figure 3.

SNMP Functionalities

Based on the informal definition, we can identify three functionalities of the SNMPv1 protocol. The
first one is a monitoring functionality, where a manager requests variable values from an agent. The
second one is a control function, where a manager asks an agent to set specific variables. The third
functionality is the ability of the agent to send traps to a manager. The monitoring functionality can
be decomposed further into even smaller, self-contained functionalities. The difference between
these functionalities are the parameters carried in the messages, and their interpretation.

The collaborations corresponding to these functionalities are shown in Figure 4, expressed with
MSC. For the monitoring functionalities, we have two similar collaborations initiated by a getReq
and a getNextReq message, respectively. While in the first collaboration, the variables are listed
explicitly, they are referred to implicitly in the second one. In both cases, the agent responds with
a getResp message carrying the variables and their values, or with errors, for instance, in case the
agent is not able to supply the value of at least one variable. The third MSC defines a typical col-
laboration of the control functionality, initiated by a setReq message, which carries the variables
and their new values. On completing the MIB update, the agent replies with a setResp message. In
case of traps, the collaboration is an asynchronous notification, with no response required. Here,

Manager Agent MIB
SNMP

7

the agent sends a trap message carrying a predefined trap type and more specific information about
the nature of the trap.

Figure 4: Collaborations of SNMPv1

These four functionalities lead to four micro protocols, namely SNMPget, SNMPgetNext,
SNMPset and SNMPtrap. We have specified these micro protocols with SDL-96, the latest version
currently supported by commercial tools. Excerpts of these specifications are shown below.

SNMPv1 micro protocols

All definitions belonging to one micro protocol are grouped into one SDL package. In Figure 5, the
top level of packages SNMPget and SNMPset specifying the corresponding micro protocols are
shown. Packages are imported when a protocol using the contained micro protocol are configured
(see below). The package definition slightly differs from the generic case in Section 3, as we have
used SDL-96 for reasons already explained. With SDL-2000, a more uniform treatment will be pos-
sible.

Figure 5: SDL packages collecting the micro protocol definitions of SNMPget and SNMPset

Manager Agent

getReq(GetReqDT)

getResp(GetRespDT)

Manager Agent

getNextReq(GetNextReqDT)

getResp(GetRespDT)

Manager Agent

setReq(SetReqDT)

setResp(SetRespDT)

Manager Agent

trap(TrapDT)

use MyASN1Defs;

package SNMPget 1(1)

SIGNAL appGetReq(AppReqDT),
appGetResp(AppRespDT),
getResp(GetRespDT),
getReq(GetReqDT);

GetProtManager GetProtAgent

use MyASNDefs;

package SNMPset 1(1)

SIGNAL appSetReq(AppReqDT),
setReq(SetReqDT);

SetProtManager SetProtAgent

8

SNMPget micro protocol

The SNMPget micro protocol is collected in the SNMPget package. We define two micro protocol
entity types, GetProtManager and GetProtAgent, and signals to interact with the management ap-
plication, i.e. the application using the SNMP service. Notice that our micro protocols are expressed
as SDL process types rather than composite state types, which is due to the use of SDL-96.

Figure 6: SDL specification of the GetProtManager entity type

The behaviour of the GetProtManager micro protocol entity (see Figure 6) consists of two transi-
tions. In the first transition, GetProtManager receives a request from the management application,
and then sends getReq signal. This signal contains a sequence number, which is used for associat-
ing the correct response to this request later. Furthermore, it contains parameters such as commu-
nity, which defines the access rights of the manager. The data types used in the micro protocol are
defined in the package MyASN1Defs, which is derived from the predefined data type package in
the SNMP standard. In the second transition, the manager receives a response from the agent and

process type GetProtManager
1(1)

newtype Association struct appReqID INTEGER; procID Pid
endnewtype;
newtype SetSeqNb Powerset(INTEGER) endnewtype;
newtype Correspondence
array (INTEGER, Association) endnewtype Correspondence;

DCL
appDT AppReqDT,
respDT GetRespDT,
seqNb INTEGER,
correspSeqNb Correspondence,
setOfSeqNb SetSeqNb,
assoc Association,
version INTEGER := 2; seqNb := 0;

setOfSeqNb := empty; Initialization of local variables

ready

appGetReq(appDT) getResp(respDT)

seqNb := seqNb +1,
assoc!appReqID :=

appDT!data!requestId,
assoc!procID := SENDER ,
correspSeqNb(seqNb) :=

 assoc,
setOfSeqNb :=

incl(seqNb, setOfSeqNb)

respDT!data!requestId
in setOfSeqNb

assoc := correspSeqNb
(respDT!data!requestId),

setOfSeqNb:= del
(respDT!data!requestId,

setOfSeqNb)
/* also deletel corresponding
row in array correspSeqNb */

getReq((. version,
appDT!community,
(. seqNb, appDT!data!
variableBindings .) .))

appGetResp ((. respDT!community,
(. assoc!appReqID, respDT!data!errStatus,
respDT!data!variableBindings .) .))
TO assoc!procID

ready ready ready

gGet1

appGetRespappGetReq

gGet2

getReqgetResp

TRUE

FALSE

9

checks if this is a response to a pending request using the sequence number, and then forwards the
response to the management application.

The behaviour of the GetProtAgent micro protocol entity (see Figure 7) consists of a single transi-
tion. On receiving a getReq signal, the entity checks the SNMP version number. If this check is
positive, it responds either with the list of requested values or an error.

Composition of SNMPv1 micro protocols

The packages containing the micro protocol definitions are now used to configure a subset of the
SNMPv1 protocol. In Figure 8, the packages SNMPget and SNMPset are therefore imported. Proc-
ess types contained in these packages are instantiated and connected by signal routes. The “compo-
sition glue” (see Section 3) is represented by the block types SNMPManager and SNMPAgent, and
by the channels and signal routes. Similarly, further micro protocol such as SNMPgetNext and
SNMPtrap can be defined and composed.

Figure 7: SDL specification of the GetProtAgent entity type

The micro protocols used in this case are very specific to SNMP. They can be used to define
SNMPv1, SNMPv2 and SNMPv3 as well as other protocols containing the get and set functional-
ities. To improve reusability, we can think of generic micro protocols. For instance, the micro pro-

process type GetProtAgent 1(1)

syntype SmallINT = INTEGER
constants 0:5
endsyntype;

DCL
reqDT GetReqDT,
version INTEGER := 2,
Err SmallINT;

ready

getReq(reqDT) Checking the version

reqDT!version /= version

Err := any(SmallINT); ready

Err = 0

getResp((. version, reqDT!community,
(. reqDT!data!requestId,
Err,reqDT!data!variableBindings .) .))
TO SENDER
/* successful reply */

getResp((. version, reqDT!community,
(. reqDT!data!requestId,
Err,reqDT!data!variableBindings .) .))
TO SENDER
/* replying with error */

ready ready

gGet

getRespgetReq

FALSE
TRUE

TRUE False

10

tocol SNMPtrap could be abstracted to a generic micro protocol OneWayHandshake that has signal
parameters. More specific micro protocols are then obtained by instantiating generic micro proto-
cols, making them reusable. Since micro protocols are seen as components here, suitable language
support is needed to define generic micro protocols as syntactically complete units.

In the specification examples so far, we have focused on the core SNMP functionalities to demon-
strate the concept of micro protocols. Here, SNMPManager and SNMPAgent communicate directly
through an SDL channel, which models a perfect network. In a subsequent step, this channel can
be replaced by a block modelling a UDP type network. Further micro protocols, for error handling
for instance, can be defined and composed with the core functionalities.

Figure 8: Configuration of a subset of SNMPv1 based on micro protocols

use SNMPget,

system SNMP 1(1)

SNMPManager SNMPAgent

snmpManager:
SNMPManager

snmpAgent:
SNMPAgent

c1

appGetResp appGetReq,
appSetReq

gApp gMan
c2

getReq,
setReq

getResp
gAg

use SNMPset;

block type SNMPAgent 1(1)

getProtAgent:
GetProtAgent

setProtAgent:
SetProtAgent

gAg

s1getResp

getReq
gGet

gAg

s2

setReq
gSet

gAg

getResp

getReq,
setReq

block type SNMPManager 1(1)

getProtManager:
GetProtManager

setProtManager:
SetProtManager

gApp

s1appGetResp

appGetReq

gGet1 gGet2

s3 getReq

getResp gMan

gApp
s2

appSetReq

gSet1 gSet2

s4 setReq

gMan

gApp

appGetResp

appGetReq,
appSetReq gMan

getReq,
setReq

getResp

11

Figure 9: Configuration of an SNMPv1 manager based on micro protocols

Furthermore, the SNMP protocol requires authentication and encoding/decoding of messages. For
a more complete SNMP specification, an SNMP entity (SNMPAgent or SNMPManager) is com-
posed in a pipeline with an authentication micro protocol entity and an encoding or decoding micro
protocol entity. When an SNMP message is to be transmitted, it is first passed to the authentication
micro protocol entity, which performs some transformations on the message. The message is then
passed to the encoding micro protocol entity, which performs the encoding of the message using
the ASN.1 basic encoding rules. For the reception, the message is passed from the decoding entity
to the authentication entity and finally to the responsible SNMP micro protocol entity. The compo-
sition of the SNMP manager is shown in Figure 9.

5. Conclusions and Outlook

In this paper, we have explained and applied the concept of micro protocols, i.e., self-contained,
ready-to-use building blocks that can be applied to configure communication systems designs. In
particular, we have examined the suitability of SDL-2000 w.r.t. language support, have specified
several micro protocols using SDL-96, and have composed them to yield the functionality of a sub-
set of SNMPv1.

We expect that micro protocols can foster reuse in the protocol engineering domain. As in other
areas, reuse of solutions and experience for recurring system development problems plays a key
role for quality improvements and an increase in productivity. Furthermore, micro protocols are a
natural way of structuring communication systems, which may enable compositional testability and
verification.

The micro protocol types we have specified so far are generic in the sense that they can be com-
posed in different ways and combinations in order to design a communication system. However,
there is potential to further boost reusability. The micro protocol type SNMPtrap, for instance, can
be abstracted to a more generic type OneWayHandshake that has signal parameters. Thus, One-
WayHandshake would still be syntactically complete and qualify as a component, while it can be

getProtManager

authentication_

decodeProtEntity

encodeProtEntity
getNextProtManager

setProtManager

trapProtManager

ProtEntity

12

specialized to yield SNMPtrap just by signal renaming and specialization of parameters. In general,
more specific micro protocols are obtained by instantiating generic micro protocols. Work in this
direction is in progress.

Work done so far shows that this micro protocol approach to protocol design is feasible. We have
applied the ideas to a subset of SNMP, the Simple Network Management Protocol used in the In-
ternet, and have achieved encouraging results. Yet, more experience is needed, and a library of mi-
cro protocols has to be built.

References

[1] B. Geppert, R. Gotzhein, F. Rößler: Configuring Communication Protocols Using SDL Patterns, in:
A. Cavalli, A. Sarma (eds.), SDL'97 - Time for Testing, Proceedings of the 8th SDL Forum, Elsevier,
Amsterdam, 1997, pp. 523-538

[2] R. Gotzhein, P. Schaible: Pattern-Based Development of Communication Systems, in: Annals of Tel-
ecommunications, Special Issue on Protocol Engineering, Vol. 54, No. 11-12, 1999, pp. 508-525

[3] R. Gotzhein, F. Khendek: Conception avec Micro-Protocoles, Colloque Francophone sur l’Ingenierie
des Protocoles (CFIP’2002), Montreal, Canada, May 27-30, 2002

[4] ITU-T Recommendation Z.100 (11/99): Specification and Description Language (SDL), International
Telecommunication Union (ITU), 1999

[5] R. E. Johnson: Frameworks = (Components + Patterns), in: Object-Oriented Application Frameworks
(Special Issue), Communications of the ACM, Vol. 40, No. 10, 1997, pp. 39-42

[6] T. Plagemann, B. Plattner, M. Vogt, T. Walter: Modules as Building Blocks for Protocol Configura-
tion, Proceedings of the International Conference on Network Protocols (ICNP’93), San Francisco,
1993

[7] F. Rößler, B. Geppert, R. Gotzhein: Collaboration-based Design of SDL Systems, Proceedings of the
10th SDL FORUM, June 2001

[8] M. Zitterbart, B. Stiller, A. Tantawy: A Model for Flexible High-Performance Communication Sub-
systems, IEEE Journal on Selected Areas in Communications, Vol. 11, No. 4, 1993, pp. 507-518

[9] J. Case, M. Fedor, M. Schoffstall, J. Davin: A Simple Network Management Protocol, RFC 1157, May
1990

[10] W. Stallings: SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Addison Wesley, Third Edition, 1999

[11] C. Szyperski: Components and architecture, Beyond Objects column, Software Development. Vol. 8,
No. 10, October 2000

[12] HORUS at http://www.cs.cornell.edu/Info/Projects/HORUS/

