

AmICom - Formally specified service platform
for ambient intelligence networks

Authors:
Ingmar Fliege
Networked Systems Group
University of Kaiserslautern

Jan Koch
Robotics Research Group
University of Kaiserslautern

Deliverable
D2.6.1
Date: 12 June 2007
Version: 1.0
Status: Final
Classification: Internal

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraunhofer
Gesellschaft.
The institute transfers innovative software devel-
opment techniques, methods and tools into indus-
trial practice, assists companies in building soft-
ware competencies customized to their needs, and
helps them to establish a competitive market posi-
tion.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Sauerwiesen 6
67661 Kaiserslautern

© 2005 Fraunhofer IESE and TU Kaiserslautern.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or oth-
erwise, without the prior written permission of the
publisher. Written permission is not needed if this
publication is distributed for non-commercial pur-
poses.

© 2005 Fraunhofer IESE and TU Kaiserslautern v

Abstract

Intelligent environments are based on services that are deployed on hardware nodes that
communicate among each other. Generic and light-weight communication middleware for ser-
vice interaction is the basis of the ubiquitous idea. In this report, AmICom, a new light-weight
communication middleware for dynamic ambient applications is presented. This middleware is
already in use on several nodes within a prototypical assisted living environment.

Keywords: Ambient intelligence, network, communication, ad-hoc, distributed services

© 2005 Fraunhofer IESE and TU Kaiserslautern vii

Table of Contents

1 Introduction 1

2 Requirements 2
2.1 Basic Functionality 2
2.2 Future functionality 3
2.3 Optional functionality (extensions) 3

3 AmICom Middleware 5
3.1 Architecture 5
3.2 Services 6
3.3 Platforms & Languages 7

4 Behaviour and service description 8
4.1 Interface behaviour 10
4.2 Provided Service 21

5 Annex A: SDL specification 25
5.1 Service Specification (not distributed) 26
5.2 Service User & Service Provider Middleware 27
5.3 Service User & Service Provider Characteristics 38
5.4 Application Interface 51
5.5 Used Datatypes 56

1 Introduction

Ambient intelligence environments consist of different type of nodes, which
communicate through wired networks or by wireless mobile ad-hoc networks
that come into existence by the mere presence of nodes that form a self-
organizing network. They support distributed user applications in various ar-
eas of ambient intelligence, including professional work, leisure activities,
public health, and transportation. For these user applications, it is essential
to provide their distributed services independently from the current network
architecture and without reconfiguration of the network.

This report presents AmICom, the tailored lightweight communication mid-
dleware for ambient intelligence networks, which is based on distributed ser-
vices. Each application in the network may register services, which are then
available to all nodes in the network. Thereby, all other applications can
subscribe to this service to form a multicast communication group.

Applications interchange messages by use of the AmICom, which allows an
abstraction from the distributed system, by delivering valid messages to ap-
plications on the local node or to application on other nodes in the network.
A message is valid, if the destination address of the massage corresponds
to the name the application has registered.

Copyright © Fraunhofer IESE 2005 2

2 Requirements

2.1 Basic Functionality

• AmICom instance:

AmICom is instantiated once on each node and will be provided as an executable that
run on linux and Windows platforms. Multiple applications can use the communication
service of the AmICom.

• Service for applications:

A class for Java and Windows is provided, which allows the interaction with the running
AmICom instance on the local node.

• Application registration by name:

Each application registers itself at the local AmICom, by providing a unique name.
bool AmICom::Register(String name)
AmICom keeps a register of applications present on the node. This registration is a re-
quirement for further communication with the AmICom. The function returns false if the
connection to the local AmICom instance failed.

• Application subscribe by name:

Each application may subscribe a service in the network by use of its unique name.
bool AmICom::Subscribe(String name)
The subscription triggers a communication between this AmiCom instance and any
other instance in the network, which provides a service with this name. Additionally to
the dissolving of name clashes, a connection between both AmiCom nodes is estab-
lished and observed. The function returns false if the connection to the local AmICom
instance failed or a service with this name is not available.

• Sending unicast messages:

Sends a message to another local or remote application:
bool AmICom::Send(String destination-name, byte[] data, int size)
The provided destination-name must corresponds to the name, an application has reg-
istered, in order to receive that message.

• Receiving messages:

Messages transmitted over the network are queued in the AmICom, if an application
with a corresponding name has been registered before. The registered application can
gather a message, in order of reception from this queue.
struct message_data AmICom::GetData()
- returns null if buffer is empty

2.2 Future functionality

Convenience methods for simple data types

To access ints, floats, chars and strings in data packets, we will provide
some convenience methods for data transformation. Here, the description of
data types using ASN.1 and the Encoding/Decoding using BER, DER or
PER is proposed.

Multi-NIC support (work in progress)

Enable the multi-hop communication in ad-hoc networks will be provided by
support of multiple hardware interfaces and appropriate routing protocols

2.3 Optional functionality (extensions)

Possible further extensions are listed below. The realisation of further exten-
sions of the AMICOM depends on complexity, effort and available resources.
Each extension requires further requirement analysis and agreements.

• Service availability check (work in progress)
Applications may register a periodically check of the availability of a
particular application at their AmICoM. Monitored applications are re-
quested to answer to certain refresh messages. If this fails or any
other loss of interaction in the distributed system is detected, other
applications may be notified.

• Check for name clashes (work in progress)
As communication is done via names, these have to be unique. To
avoid application name clashes at runtime (user errors), AmICoM
probes at registration time if the given name is already present and
refuses registration in this case. This would exclude the possible ex-
tension “Group management”

• Group management
Applications registering with equal names, form a group of communi-
cating applications. A message with the destination-name of the

Copyright © Fraunhofer IESE 2005 4

group will be delivered to all members of the group. This extension
would exclude the possible extension “Check for name clashes”

• Observation of data messages
The transmission of messages may be observed in order to check
the successful delivery to one application in the network. Otherwise
the transmission will continuously be repeated.

• Fragmentation and reassembly of data (work in progress)

For a better support of large data packages from the application (e.g.
video frames or large XML descriptions), the data must be seg-
mented in multiple fragments. The size of the data must accomplish
the requirements of the used communication technology.

3 AmICom Middleware

The AmICom middleware is specified using the formal specification lan-
guage SDL-96. The transpiler ConTraST automatically generates an imple-
mentation in C++. Together with the corresponding runtime environment
and a set of generic communication modules an executable for multiple plat-
forms can be generated.

3.1 Architecture

Figure 1 shows the general architecture of each node in the ambient envi-
ronment. Depending on the available hardware resources, there are possibly
several applications, which may register or subscribe to a particular service
in the network.

Figure 1: AmICom architecture

Copyright © Fraunhofer IESE 2005 6

 For each request with a new service name, a ServiceProvider or a Ser-
viceUser is created, representing a communication endpoint for the applica-
tion. The communication between a ServiceProvider and all of its subscribed
ServiceUsers is observed in order to detect the loss of communication or the
failure of a node in the network. In case that the failure cannot be recovered,
the subscribed applications are notified.

3.2 Services

One objective of AmICom is to keep the programming interface as simple as
possible to facilitate the familiarization with the interface, increase the accep-
tance and allow the portage to multiple hardware platforms. The API to the
AmICom middleware is realised by C functions or as methods of a class in
all object-oriented languages:

• bool: REGISTER(string: name)

• bool: UNREGISTER(string: name)

• bool: SUBSCRIBE(string: name)

• bool: UNSUBSCRIBE(string: name)

• bool: SEND(string: name, bytes: data)

• bool: RECEIVE(string: name, bytes: data)

Figure 2 shows a typical scenario for the use of the AmICom API. The
REGISTER call (respectively UNREGISTER) allows an application to register a
service in the AmI network with a given name. Each application interested in
this particular service may subscribe to this service with a SUBSCRIBE(name).
AmICom observes these operations and gives a feedback, whether the re-
quest could be fully performed. The REGISTER may fail if a service with this
name is already been registered in the network. The SUBSCRIBE fails, when
the requested service is currently not available.

Figure 2: Communication scenario

All applications that have registered or subscribed may SEND messages that
are transmitted to all other associated application with this service. These
messages can be consumed by a RECEIVE call. Additionally, the registration
of callback functions is possible, allowing an immediate reception of mes-
sages and the asynchronous notification of service failure.

3.3 Platforms & Languages

The AmICom currently support the following platforms:

• Windows (Windows 2000 and newer)

• Linux (Kernel 2.4 and newer)

The AmICom API used by the application developer is available for:

• C

• C++

• Java

Copyright © Fraunhofer IESE 2005 8

4 Behaviour and service description

Name: AmICom

Version: 1.0

Author: Ingmar Fliege

Intent

These micro protocols specify the distibuted asymetric service platform: AmICom

Interface signature

ServiceProvider

Register req

UnRegister req

Send
User

Register ind

UnRegister ind

Recv
User

Subscribe req

Investigate req

Investigate ind

Send

Recv

medium

Subscribe ind

Investigate req

Investigate ind

Send

Recv

medium

ServiceUser

Subscribe req

UnSubscribe req

Send
User

Subscribe ind

UnSubscribe ind

Recv
User

Subscribe ind

Send

Recv
medium

Subscribe req

Send

Recv
medium

userProviderManagement

Register req

UnRegister req

Investigate req

Subscribe req

UnSubscribe req

Send

c1 Gate

Register ind

UnRegister ind

Investigate ind

Subscribe ind

UnSubscribe ind

Recv

c1 Gate

Register ind

UnRegister ind

Recv
c2 Gate

Register req

UnRegister req

Send
c2 Gate

Subscribe ind

UnSubscribe ind

Recv
c3 Gate

Subscribe req

UnSubscribe req

Send
c3 Gate

Copyright © Fraunhofer IESE 2005 10

4.1 Interface behaviour

Scenario 1

ServiceProvider

Investigate req
Investigate ind

msc NotRegistered/Registered

Description:
The signal Investigate req indicates a
query for a service with the given name
in the network. The signal Investigate ind
is the reply for the query. Since the name
corresponds to one that was searched, the
Investigate ind is sent.

Scenario 2

ServiceProvider

Register req

confTimer

Investigate req

msc NotRegistered

Description:
The signal Register req initiates the reg-
istration of a new service in the network.
The timer confTimer is set for a duration
of CONFTIMEOUT time units. Next, the
signal Investigate req searches for a service
in the network, which has already regis-
tered a service with this name.

Scenario 3

ServiceProvider

Subscribe req

msc NotRegistered

Description:

The signal Subscribe req initiates a sub-
sription to a service with the given name.
No further operations are performed.

Scenario 4

ServiceProvider

confTimer

Register ind

msc Wait4conf

Description:

The timer confTimer signals, that there is
no other service in the network registered
by this service name. The signal Regis-
ter ind indicates the successful registration
of a new service in the network.

Scenario 5

ServiceProvider

Investigate ind

Register ind

STOP

opt

msc Wait4conf

Description:
The signal Investigate ind is consumed and
triggers the following actions: If this ser-
vice name is already registered by another
instance of this protocol, the signal Regis-
ter ind is sent and the process stops.

Copyright © Fraunhofer IESE 2005 12

Scenario 6

ServiceProvider

UnRegister req

UnRegister ind

opt

msc Registered

Description:

A service with a well defined name is reg-
istered by the service provider. The sig-
nal UnRegister req is consumed and trig-
gers the following actions: If the applica-
tion is known by this service, the signal
UnRegister ind indicates the cancellation
of the registered service.

Scenario 7

ServiceProvider

Register req

Register ind

Register ind

msc Registered

Description:
A service with a well defined name is reg-
istered by the service provider. The signal
Register req initiates reregistration of this
service (same name) by another applica-
tion on the current node. The signal Reg-
ister ind indicates the success of registra-
tion to the new application, which has cre-
ated the request. The signal Register ind
indicates the loss of registration to the first
application.

Scenario 8

ServiceProvider

Subscribe req

Subscribe ind

msc Registered

Description:
A service with a well defined name is reg-
istered by the service provider. The signal
Subscribe req initiates a subscription to a
service with the given name. The signal
Subscribe ind confirms that the subscrip-
tion was successful.

Scenario 9

ServiceProvider

Recv

Recv

msc Registered

Description:
A service with a well defined name is reg-
istered by the service provider. The signal
Recv contains data for the application that
was send by some service user in the net-
work. The signal Recv indicates the recep-
tion of new data for the application.

Scenario 10

ServiceProvider

Send

Send

opt

msc Registered

Description:
A service with a well defined name is reg-
istered by the service provider. The signal
Send contains data from the application
that has to be sent to other applications
in the network. If the service name cor-
responds to the name of this service, the
signal Send transmits the data to all par-
ticipating services in the network.

Scenario 1

ServiceUser

Subscribe req

confTimer

Subscribe req

msc NotRegistered

Description:
No application has subscribed a service in
the network. The signal Subscribe req inti-
ates the subscription at a service by name
in the network. The timer confTimer is set
for a duration of CONFTIMEOUT time
units. Next, the signal Subscribe req is sent
to all service providers in the network in
order to subscribe the specified serivce.

Copyright © Fraunhofer IESE 2005 14

Scenario 2

ServiceUser

confTimer

Subscribe ind

msc Wait4sub

Description:

The timer confTimer indicates that the re-
quested service was not found. The signal
Subscribe ind indicates the failure of sub-
scription.

Scenario 3

ServiceUser

Subscribe ind

confTimer

Subscribe ind

msc Wait4sub

Description:

The signal Subscribe ind is the confima-
tion of subscription at the requested ser-
vice. The timer confTimer is reset. Next,
the signal Subscribe ind indicates the suc-
cess of subscription.

Scenario 4

ServiceUser

Subscribe req

Subscribe ind
opt

msc Registered

Description:
A service user has subscribed a service in
the network. The signal Subscribe req in-
dicates that another application whishes to
subscribe a service which has already been
subscribed by another application. If the
requested service name corresponds to the
service name this instance has subscribed,
the signal Subscribe ind confirms the suc-
cessful registration.

Scenario 5

ServiceUser

UnSubscribe req

UnSubscribe ind

msc Registered

Description:
A service user has subscribed a service in
the network. The signal UnSubscribe req
initiates the cancelation of a service. The
signal UnSubscribe ind is the confirmation
of the unsubscribe operation.

Scenario 6

ServiceUser

wdTimer

Subscribe ind

msc Registered

Description:
A service user has subscribed a service in
the network. The timer wdTimer is con-
sumed and the signal Subscribe ind is sent.

Scenario 7

ServiceUser

Recv

Recv

msc Registered

Description:
A service user has subscribed a service in
the network. The signal Recv contains
data for the application that was send by
some node in the network. The signal Recv
is sent.

Copyright © Fraunhofer IESE 2005 16

Scenario 8

ServiceUser

Send

Send

opt

msc Registered

Description:

A service user has subscribed a service in
the network. The signal Send contains
data from the application that has to be
sent to other applications in the network.
If the application has registed at the spec-
ified service, the signal Send transmits the
data to all participating services in the net-
work.

Scenario 1

userProviderManagement

UnRegister req
UnRegister req

msc Idle

Description:

The signal UnRegister req initiates the
cancellation of a service registration by the
application. Otherwise, the signal UnReg-
ister req is sent.

Scenario 2

userProviderManagement

UnSubscribe req
UnSubscribe req

msc Idle

Description:
The signal UnSubscribe req initiates the
cancellation of a service subscription by the
application. Otherwise, the signal UnSub-
scribe req is sent.

Scenario 3

userProviderManagement

Subscribe ind

Subscribe ind

msc Idle

Description:
The signal Subscribe ind indicate, that the
subscription at the service has completed.
The signal Subscribe ind is the answer to
the application with a return value indicat-
ing the success or failure.

Scenario 4

userProviderManagement

Subscribe req

Subscribe req

msc Idle

Description:

The signal Subscribe req initiates the sub-
scription at a service with the given name.
The signal Subscribe req instructs the lo-
cal service user to be responsible for the
subscription at a service in the network.

Scenario 5

userProviderManagement

Investigate req

Investigate req

msc Idle

Description:

The signal Investigate req searches a serice
by name in the network. The signal Inves-
tigate req is sent.

Copyright © Fraunhofer IESE 2005 18

Scenario 6

userProviderManagement

Register req

Register req

msc Idle

Description:
The signal Register req initiates the reg-
istration of a new service with the given
name. The signal Register req instructs the
local service provider to be responsible for
the service with the given name.

Scenario 7

userProviderManagement

Register ind

Register ind

msc Idle

Description:

The signal Register ind indicate, that a
new registration of service has completed.
The signal Register ind is the answer to the
application with a return value indicating
the success or failure.

Scenario 8

userProviderManagement

Recv

Recv

msc Idle

Description:
The signal Recv contains data from some
application in the network. The signal
Recv forward the data to the appropriate
application.

Scenario 9

userProviderManagement

Send

Send

Send

msc Idle

Description:
The signal Send contains data from the ap-
plication. The signal Send instructs the
serice provider to send the data and the sig-
nal Send instructs the serice user to send
the data.

Scenario 10

userProviderManagement

UnSubscribe ind

UnSubscribe ind

msc Idle

Description:

The signal UnSubscribe ind provides the
result of the unsubscribe operation. The
signal UnSubscribe ind sends the result to
the application.

Scenario 11

userProviderManagement

UnRegister ind

UnRegister ind

msc Idle

Description:
The signal UnRegister ind provides the re-
sult of the unregistration. The signal Un-
Register ind sends the result to the appli-
cation.

Copyright © Fraunhofer IESE 2005 20

Scenario 12

userProviderManagement

Subscribe ind

Subscribe ind

msc Wait4sub/Idle

Description:
The signal Subscribe ind indicate, that the
subscription at the service has completed.
The signal Subscribe ind is the answer to
the application with a return value indicat-
ing the success or failure.

Scenario 13

userProviderManagement

Register ind

Register ind

msc Wait4reg/Idle

Description:

The signal Register ind indicate, that a
new registration of service has completed.
The signal Register ind is the answer to the
application with a return value indicating
the success or failure.

Architecture

:userProvider-
Management

virt. com
:Simple-
Service-
Provider

virt. com :Simple-
ServiceUser

4.2 Provided Service

Scenario 1

userProviderManagement
entity1

ServiceProvider
entity2

ServiceUser
entity3

Subscribe req

msc idle

Description:

No application has subscribed a service in the network.
The signal Subscribe req initiates the subscription at a service with the given name. No further
operations are performed.

Scenario 2

userProviderManagement
entity1

ServiceProvider
entity2

ServiceUser
entity3

Register req

confTimer

Register ind

msc idle

Description:

No application has subscribed a service in the network.
The signal Register req initiates the registration of a new service with the given name. The timer
confTimer signals, that there is no other service in the network registered by this service name.
The signal Register ind is the answer to the application with a return value indicating the success
or failure.

Copyright © Fraunhofer IESE 2005 22

Scenario 3

userProviderManagement
entity1

ServiceProvider
entity2

ServiceUser
entity3

Subscribe req

Subscribe ind

msc idle

Description:

A service with a well defined name is registered by the service provider. No application has
subscribed a service in the network.
The signal Subscribe req initiates the subscription at a service with the given name. The signal
Subscribe ind is the answer to the application with a return value indicating the success or failure.

Scenario 4

userProviderManagement
entity1

ServiceProvider
entity2

ServiceUser
entity3

Register req

Register ind

Register ind

msc idle

Description:
A service with a well defined name is registered by the service provider. A service user has
subscribed a service in the network.
The signal Register req initiates the registration of a new service with the given name. The signal
Register ind is the answer to the application with a return value indicating the success or failure.
The signal Register ind is the answer to the application with a return value indicating the success
or failure.

Scenario 5

userProviderManagement
entity1

ServiceProvider
entity2

ServiceUser
entity3

Send

Recv

opt

Recv

opt

msc idle

Description:

A service with a well defined name is registered by the service provider. A service user has
subscribed a service in the network.
The signal Send contains data from the application. If the service name corresponds to the name of
this service, the signal Recv forward the data to the appropriate application. If the application has
registed at the specified service, the signal Recv forward the data to the appropriate application.

Imported and exported definitions

Used packages

– none –

Required definitions

• Data type AddressType

• Signal Register req(Integer,::AddressType::Newtype::AddressType)

• Signal UnRegister req(Integer,::AddressType::Newtype::AddressType)

• Signal Send(Integer,::AddressType::Newtype::AddressType,Octet string)

Si l R i i d(I Add T N Add T)

Copyright © Fraunhofer IESE 2005 24

• Signal Recv(Integer,::AddressType::Newtype::AddressType,Octet string)

• Signal Subscribe req(Integer,::AddressType::Newtype::AddressType)

• Signal Investigate req(Integer,::AddressType::Newtype::AddressType)

• Signal Investigate ind(Integer,::AddressType::Newtype::AddressType,Boolean)

• Signal Subscribe ind(Integer,::AddressType::Newtype::AddressType)

• Signal UnSubscribe req(Integer,::AddressType::Newtype::AddressType)

• Signal UnSubscribe ind(Integer,::AddressType::Newtype::AddressType)

Provided definitions

• Process type ServiceProvider

• Process type ServiceUser

• Process type userProviderManagement

Checklist

– none –

5 Annex A: SDL specification

system AmiCom 1(1)

applicationAdaptation

amiComServices:
DistributedUserProviderMiddleware

routing:
NoRouting

converts signals from the
environment (SEnF) in service
specific signals

toApp APPL_init,
APPL_close,
APPL_send,
APPL_setValue,
APPL_getValue

APPL_recv,
APPL_recvValue

c1

Register_req,
UnRegister_req,
Investigate_req,
Subscribe_req,
UnSubscribe_req,
Send

Register_ind,
UnRegister_ind,
Investigate_ind,
Subscribe_ind,
UnSubscribe_ind,
Recv

User

c2 LAN_send

LAN_recv

medium

User

toLAN LAN_send

LAN_interfaces,
LAN_recv

medium

Copyright © Fraunhofer IESE 2005 26

5.1 Service Specification (not distributed)

process type LocalService 1(1)

DCL
appID Integer,
serviceName AddressType,
lookupName AddressType,
data Octet_string;

not_
Registered

not_
Registered There is no application registered to this service

Register_req
(appID,serviceName)

associates an
application with the
given service name

Register_ind
(appID,serviceName,
true) to SENDER

confirmes the
successful registration.

registered

Investigate_req
(appID,lookupName)

determines whether a
service with the given
name is available

Investigate_ind
(appID,lookupName,
false) to Sender

indicates the inexistents
of the requested service

-

registered Some application with a well-defined name is registered to this service

Register_req
(appID,serviceName)

indicates a request to
associate an application
with the given service name

Register_ind
(appID,serviceName,
false) to Sender

refuses the request, since
an application has already
registered

-

Investigate_req
(appID,lookupName)

determines whether a
service with the given
name is available

serviceName=
lookupName

the requested name is equal
to the registed service name

Investigate_ind
(appID,lookupName,
false) to Sender

returns the negative
result of the query

-

Investigate_ind
(appID,lookupName,
true) to Sender

returns the positive
result of the query

-

registered

Send(appID,
lookupName,
data)

delivers user data, which is
transfered to all registered
applications with the
service name

Recv(appID,
lookupName,
data)

delivers user data to applications
with the given service name

-

ServUser

Register_ind,
Investigate_ind,
Recv

Register_req,
Investigate_req,
Send

else
true

5.2 Service User & Service Provider Middleware

use LocalService;
use AddressType;

package ServiceUserProvider 1(1)

/*
Author_disabled: Ingmar Fliege
Version: 0.1
Description: LocalService is a simple micro protocol consiting of
a service user and a service provider protocol. This service allows
an application to register by name, query registered applications
by name and send&receive data via this service.
*/

SIGNAL
alive(AddressType);

/* one hop delay is about 3-4 ms -> ~40ms */
Synonym CONFTIMEOUT Duration=0.04;

ServiceProvider ServiceUser

ServiceProvider_
wHB

ServiceUser_
wWD

Copyright © Fraunhofer IESE 2005 28

;

process type ServiceProvider 1(3)

DCL appID Integer;
DCL serviceName AddressType;
DCL serviceUser PId;
Timer confTimer:=CONFTIMEOUT;

DCL sigID Integer;
DCL sigName AddressType;
DCL sigResult Boolean;

not_
Registered

not_
Registered

There is no service registered
at this time.

Register_req
(appID,serviceName)

initiates the registration
of a new service in the
network

Investigate_req
(-1,serviceName)
via medium

searches for a service in the network,
which has already registered a service
with this name

Set(confTimer);
serviceUser:=sender;

wait4conf

*
Investigate_ind
(sigID,sigName,
sigResult)

serviceName
=sigName

If this service name
is already registered
by another instance
of this protocol

Register_ind
(appID,serviceName
,false) to serviceUser

-

confTimer
signals, that there is no other
service in the network registered
by this service name

Register_ind
(appID,serviceName
,true) to serviceUser

indicates the successful registration
of a new service in the network

registered

User

Register_ind,
UnRegister_ind,
RecvRegister_req,

UnRegister_req,
Send

medium Subscribe_ind,
Investigate_req,
Investigate_ind,
Send,Recv

Subscribe_req,
Investigate_req,
Investigate_ind,
Send,Recv

true

false

;

process type ServiceProvider 2(3)

registered
A service with a well defined
name is registered by the
service provider.

Register_req
(sigID,serviceName)

initiates reregistration
of this service (same name) by another
application on the current node

appID/=
sigID

if there is another
application registering
a service with this name

Register_ind
(appID,serviceName
,false) to sender

indicates the loss of
registration to the
first application

Register_ind
(sigID,serviceName
,true) to sender

indicates the success
of registration to the
new application, which
has created the request.

appID:=sigID

-

true
else

Copyright © Fraunhofer IESE 2005 30

;

process type ServiceProvider 3(3)

registered

Subscribe_req
(sigID,sigName)

initiates a subscription
to a service with the
given name

sigName=
serviceName

if the subscription
name is equal to the
name of this service

Subscribe_ind
(sigID,sigName,true)

confirms that the
subscription was
successful.

-

not_
Registered

There is no service
aviable in this node.

Subscribe_req
(sigID,sigName)

initiates a subsription
to a service with the
given name

-

*
(wait4conf)

Investigate_req
(sigID,sigName)

indicates a query for a
service with the given
name in the network

serviceName=sigName
AND

sender /= self

If the Investigate_req
requests the same
name as this service

Investigate_ind
(sigID,serviceName
,true) to sender

is the reply for the
query. Since the name
corresponds to one that
was searched, the
Investigate_ind is sent.

-

registered

UnRegister_req
(sigID,sigName)

sigID=
appID

If the application is
known by this service

UnRegister_ind
(sigID,sigName,true)

indicates the
cancellation of the
registered service

not_
Registered registered

true

false

true
false

true

else

process type ServiceUser 1(3)
DCL appID Integer;
DCL applications AppIDList;
DCL serviceName AddressType;
DCL serviceUser PId;

Timer confTimer:=CONFTIMEOUT;

DCL sigID Integer;
DCL sigName AddressType;
DCL sigResult Boolean;

not_
Registered

not_
Registered

No application has subscribed
a service in the network

Subscribe_req
(appID,serviceName)

intiates the subscription at
a service by name in the network

Subscribe_req
(appID,serviceName)
via medium

is sent to all service providers in
the network in order to subscribe
the specified serivce

set(confTimer);
serviceUser:=sender;

wait4sub The protocol is waiting for a confirmation
of timeout for the subscription

Subscribe_ind
(sigID,sigName,
sigResult)

is the confimation
of subscription at
the requested service

Subscribe_ind
(appID,sigName,true)
to serviceUser

indicates the success
of subscription

/*#CODE
#ifdef DEBUG

printf("Service replied!\n");
#endif

*/

reset(confTimer);
append(applications,appID);

registered

confTimer
indicates that the
requested service
was not found

Subscribe_ind
(appID,serviceName,false)
to serviceUser

indicates the failure
of subscription

/*#CODE
#ifdef DEBUG

printf("Service: no answer!\n");
#endif

*/

not_
Registered

User

Subscribe_ind,
UnSubscribe_ind,
Recv

Subscribe_req,
UnSubscribe_req,
Send

medium

Subscribe_req,
Send,Recv

Subscribe_ind,
Send,Recv

Copyright © Fraunhofer IESE 2005 32

process type ServiceUser 2(3)

registered
A service user has
subscribed a service
in the network

Subscribe_req
(sigID,sigName)

indicates that another application
whishes to subscribe a service
which has already been subscribed
by another application

sigName=
serviceName

if the requested service name corresponds
to the service name this instance has subscribed

-
Subscribe_ind
(sigID,sigName,true)
to serviceUser

confirms the successful registration

/*#CODE
#ifdef DEBUG

printf("Service is here!\n");
#endif

*/

for (DCL i Integer:=1,
i<=length(applications),

i+1)
if (applications(i)=sigID)

sigID:=-1;

if (sigID/=-1)
append

(applications,sigID);

-

false
true

process type ServiceUser 3(3)

NEWTYPE AppIDList String(Integer,empty)
ENDNEWTYPE;

registered

UnSubscribe_req
(sigID,sigName)

initiates the cancelation of
a service

for (DCL i Integer:=1,
i<=length(applications),

i+1)
if (applications(i)=sigID)

{
OUTPUT UnSubscribe_ind(sigID,sigName,true);

applications:=
substring(applications,1,i-1)//

substring(applications,i+1,length(applications)-i);
}

UnSubscribe_ind
(sigID,sigName,true)
to sender

is the confirmation of the
unsubscribe operation

length(applications)

not_
Registered registered

0
else

Copyright © Fraunhofer IESE 2005 34

process type Heartbeat 1(1)

TIMER heartbeatT;
DCL
 heartbeatInterval Duration := 1;

virtual

/*optional
heartbeatInterval Duration := X */

optional:
redefine start transition
to set needed heartbeat interval

set(NOW +
heartbeatInterval, heartbeatT)

beating

beating

heartbeatT

alive

set(NOW +
heartbeatInterval, heartbeatT)

-

g
alive

process type Watchdog 1(1)

Timer watchdogT;
DCL
 safeInterval Duration;

OPTIONAL REFINE GATE:
extend gate with signal sigX disabled

alive

set(NOW +
safeInterval, watchdogT)

enabled

virtual

safeInterval := 3; redefine with correct
timeout interval

disabled

enabled

alive

set(NOW +
safeInterval, watchdogT)

-

virtual
watchdogT

dead

dead

virtual alive

set(NOW +
safeInterval, watchdogT)

enabled

OPTIONAL REFINE STATE:
add new transition to disable watchdog
-> input sigX -> TASK: reset(watchdogT)
[-> sigX]
->nextstate disabled

OPTIONAL REFINE:
add output of reanimate
signal sigZ

REFINE:
add output of fail-safe
signal sigY

REFINE GATE:
extend gate with signal sigY [sigX,sigZ]

wdIn
alive

wdOut

Copyright © Fraunhofer IESE 2005 36

inherits ServiceProvider;

process type ServiceProviderwHB 1(1)

TIMER
hbTimer:=1;

registered

NOT active
(hbTimer)

alive
(serviceName)

set
(hbTimer)

-

hbTimer
medium

alive

inherits ServiceUser;

process type ServiceUserwWD 1(1)

TIMER
wdTimer:=3;

DCL aliveName AddressType;

registered

NOT active
(wdTimer)

set
(wdTimer)

-

alive
(aliveName)

serviceName
=aliveName

wdTimer

for (DCL i Integer:=1,
i<=length(applications),

i+1)
OUTPUT Subscribe_ind(

applications(i),serviceName,false)
via User;

applications:=(. .);

not_
Registered

not_
Registered

active
(wdTimer)

reset
(wdTimer)

-

medium

alive

true
false

Copyright © Fraunhofer IESE 2005 38

5.3 Service User & Service Provider Characteristics

USE ServiceUserProvider;
USE AddressType;
USE LocalService;

package ServiceCharacteristics 1(1)

SimpleService_
Provider

SimpleService_
User

inherits ServiceProviderwHB;

process type SimpleServiceProvider 1(1)

DCL
appl Integer,
addr AddressType,
data Octet_string;

registered

Send(appl,
addr,data)

contains data from the
application that has to be
sent to other applications
in the network

appID=
appl

if the data has origins
from the registered
application

addr=
serviceName

the service name
corresponds to the
name of this service

Send(appl,
addr,data)
via medium

transmits the data to
all participating services
in the network

-

Recv(appl,
addr,data)

contains data for the application
that was send by some service
user in the network

addr=
serviceName

the service name
corresponds to the
name of this service

Recv(appID,
addr,data)
via User

indicates the reception
of new data for the
application

-

*
(registered)

Send(appl,
addr,data)

-

Recv(appl,
addr,data)

-

true

true
false

false
true

false

Copyright © Fraunhofer IESE 2005 40

inherits ServiceUserwWD;

process type SimpleServiceUser 1(1)
DCL
appl Integer,
addr AddressType,
data Octet_string,
doSend Boolean;

registered

Send(appl,
addr,data)

contains data from the
application that has to be
sent to other applications
in the network

addr=
serviceName if the data is destined

for this service

doSend:=false;
for (DCL i Integer:=1,

i<=length(applications),
i+1)

if (applications(i)=appl)
doSend:=true;

doSend the application has registed
at the specified service

Send(appl,
addr,data)
via medium

transmits the data to
all participating services
in the network

-

Recv(appl,
addr,data)

contains data for the application
that was send by some node in
the network

addr=
serviceName

if the data is destined
for this service

for (DCL i Integer:=1,
i<=length(applications),

i+1)
OUTPUT Recv(

applications(i),addr,data)
via User;

-

*
(registered)

Send(appl,
addr,data)

-

Recv(appl,
addr,data)

-

true

true
false

false
true

false

USE Signals;
USE LocalService;
USE AddressType;
USE ServiceUserProvider;
USE ServiceCharacteristics;
USE AmiComPackets;

package ServiceManagement 1(1)

SIGNAL
APPL_init(Integer),APPL_close(Integer),
APPL_send(Integer,Octet_string,Octet_string),
APPL_recv(Integer,Octet_string,Octet_string),
APPL_setValue(Integer,Charstring,Octet_string),
APPL_getValue(Integer,Charstring),
APPL_recvValue(Integer,Charstring,Octet_string);

ServiceMiddleware

UserProvider_
Middleware

Local_
UserProviderMiddleware

Distributed_
UserProviderMiddleware

Copyright © Fraunhofer IESE 2005 42

block type UserProviderMiddleware 1(1)

/*
Author: Ingmar Fliege
Version: 1.0
Intent: These micro protocols
specifies a distibuted asymetric
service platform
*/

/*Interaction:
SimpleServiceUser:Subscribe_req -> SimpleServiceProvider:Subscribe_req
SimpleServiceProvider:Subscribe_ind -> SimpleServiceUser:Subscribe_ind
SimpleServiceProvider:Investigate_req -> SimpleServiceProvider:Investigate_req
SimpleServiceProvider:Investigate_ind -> SimpleServiceProvider:Investigate_ind
SimpleServiceProvider:Send -> SimpleServiceUser:Recv
SimpleServiceUser:Send -> SimpleServiceProvider:Recv
*/

userProvider_
Management

serviceProvider(0,):
SimpleServiceProvider

serviceUser(0,):
SimpleServiceUser

User

User

Register_ind,
UnRegister_ind,
Investigate_ind,
Subscribe_ind,
UnSubscribe_ind,
Recv

Register_req,
UnRegister_req,
Investigate_req,
Subscribe_req,
UnSubscribe_req,
Send

c1

Register_ind,
UnRegister_ind,
Investigate_ind,
Subscribe_ind,
UnSubscribe_ind,
Recv

Register_req,
UnRegister_req,
Investigate_req,
Subscribe_req,
UnSubscribe_req,
Send

c2

Register_req,
UnRegister_req,
Send

Register_ind,
UnRegister_ind,
Recv

User

c3 Subscribe_req,
UnSubscribe_req,
Send

Subscribe_ind,
UnSubscribe_ind,
Recv

User

process userProviderManagement 1(3)

NEWTYPE name2PIdArray Array(AddressType,PId)
ENDNEWTYPE;

DCL appID Integer;
DCL serviceName AddressType;
DCL data Octet_string;
DCL result Boolean;

DCL provider2PId name2PIdArray;
DCL user2PId name2PIdArray;idle

idle

Register_req
(appID,serviceName)

initiates the registration of
a new service with the given
name

provider2PId
(serviceName) If a local service provider is

not created yet

service_
Provider

provider2PId
(serviceName):=

Offspring

Register_req
(appID,serviceName)
to provider2PId(serviceName)

instructs the local service
provider to be responsible for
the service with the given name

wait4reg

Investigate_req
(appID,serviceName)

searches a serice by
name in the network

Investigate_req
(appID,serviceName)

-

idle,
wait4reg

Register_ind
(appID,serviceName,
result)

indicate, that a new registration
of service has completed

Register_ind
(appID,serviceName,
result) via User

is the answer to the application
with a return value indicating the
success or failure

idle

NULL
else

Copyright © Fraunhofer IESE 2005 44

process userProviderManagement 2(3)

idle

Subscribe_req
(appID,serviceName)

initiates the subscription at a
service with the given name

user2PId
(serviceName) If a local service user process

is not created yet

serviceUser

user2PId
(serviceName):=

Offspring

Subscribe_req
(appID,serviceName)
to user2PId(serviceName)

instructs the local service
user to be responsible for the
subscription at a service in
the network

wait4sub

*

idle,
wait4sub

Subscribe_ind
(appID,serviceName,
result)

indicate, that the subscription at
the service has completed

Subscribe_ind
(appID,serviceName,
result) via User

is the answer to the application
with a return value indicating the
success or failure

idle

NULL
else

process userProviderManagement 3(3)

idle

Send(appID,
serviceName,
data)

contains data from the
application.

Send(appID,
serviceName,
data)

to provider2PId
(serviceName)

instructs the serice
provider to send the
data

Send(appID,
serviceName,
data)

to user2PId
(serviceName)

instructs the serice
user to send the
data

-

Recv(appID,
serviceName,
data)

contains data from some
application in the network.

Recv(appID,
serviceName,
data) via User

forward the data to the
appropriate application

-

idle

UnRegister_req
(appID,
serviceName)

initiates the cancellation of
a service registration by the
application

provider2PId
(serviceName)

UnRegister_req
(appID,serviceName)

to provider2PId
(serviceName)

-

UnSubscribe_req
(appID,
serviceName)

initiates the cancellation of
a service subscription by the
application

user2PId
(serviceName)

UnSubscribe_req
(appID,serviceName)

to user2PId
(serviceName)

-

idle

UnRegister_ind(appID,
serviceName,result)

provides the result of the
unregistration

UnRegister_ind(appID,
serviceName,result)
via User

sends the result to
the application

-

UnSubscribe_ind(appID,
serviceName,result)

provides the result of the
unsubscribe operation

UnSubscribe_ind(appID,
serviceName,result)
via User

sends the result to
the application

-

else

NULL

else

NULL

Copyright © Fraunhofer IESE 2005 46

inherits UserProviderMiddleware;

block type LocalUserProviderMiddleware 1(1)

serviceProvider serviceUser

localSignal_
Distributor

vc2

Subscribe_ind,
Send,Recv,
alive

Subscribe_req,
Send,Recv

medium

vc1

Subscribe_req,
Send,Recv

Subscribe_ind,
Send,Recv,
alive

medium

process localSignalDistributor 1(1)

DCL
i Integer,
addr AddressType,
data Octet_String,
b Boolean,
provider ProcessList,
user ProcessList;

NEWTYPE ProcessList Powerset(PId)
ENDNEWTYPE;

idle

alive(addr)

incl(sender,
provider)

for (DCL i Integer:=1,i<=length(user),i+1)
OUTPUT alive(addr)

to take(user,i);

-

Subscribe_req
(i,addr)

incl(sender,
user)

for (DCL i Integer:=1,i<=length(provider),i+1)
OUTPUT Subscribe_req(i,addr)

to take(provider,i);

-

Subscribe_ind
(i,addr,b)

for (DCL i Integer:=1,i<=length(user),i+1)
OUTPUT Subscribe_ind(i,addr,b)

to take(user,i);

-

idle

Send
(i,addr,data)

sender in
provider

for (DCL i Integer:=1,i<=length(user),i+1)
OUTPUT Recv(i,addr,data)

to take(user,i);

-

for (DCL i Integer:=1,i<=length(provider),i+1)
OUTPUT Recv(i,addr,data)

to take(provider,i);

-

true
false

Copyright © Fraunhofer IESE 2005 48

inherits UserProviderMiddleware;

block type DistributedUserProviderMiddleware 1(1)

Signal
codecPid;

serviceProvider

Distributor

CoDec

serviceUser

medium

LAN_send

LAN_recv

vc1

Subscribe_ind,
Investigate_ind,
Investigate_req,
Send,Recv,
alive

Subscribe_req,
Investigate_ind,
Investigate_req,
Send,Recv

medium

vc3
Subscribe_req,
Subscribe_ind,
Investigate_ind,
Investigate_req,
Send,alive

Subscribe_req,
Subscribe_ind,
Investigate_ind,
Investigate_req,
Recv,alive,codecPid

vc4 LAN_send

LAN_recv

vc2

Subscribe_req,
Send,Recv

Subscribe_ind,
Send,Recv,
alive

medium

process CoDec 1(2)
DCL id Integer;
DCL name AddressType;
DCL data Octet_string;
DCL result Integer;
DCL packet ServicePacket;
DCL encoded Octet_string;

codecPid

idle

alive
(name)

packet!alive:=
ostr(name);

result:=
encode(encoded,packet);

LAN_send
(1,encoded)

-

Subscribe_req
(id,name)

packet!subsReq:=
ostr(name);

result:=
encode(encoded,packet);

Subscribe_ind
(id,name)

packet!subsInd:=
ostr(name);

result:=
encode(encoded,packet);

Send(id,
name,data)

packet!data:=
(. ostr(name), data .);

result:=
encode(encoded,packet);

idle

Investigate_req
(id,name)

packet!invReq:=
ostr(name);

result:=
encode(encoded,packet);

LAN_send
(1,encoded)

-

Investigate_ind
(id,name)

packet!invInd:=
ostr(name);

result:=
encode(encoded,packet);

Copyright © Fraunhofer IESE 2005 50

process CoDec 2(2)

idle

LAN_recv
(id,encoded)

result:=
decode(encoded,packet);

result=0

packet!present

alive
(addr(packet!alive))
to Distributor

-

Subscribe_req(0,
addr(packet!subsReq))
via vc3

-

Subscribe_ind(0,
addr(packet!subsInd),true)
via vc3

-

Recv(0,
addr(packet!data!name),
packet!data!data)
via vc3

- -
/*drop*/

Investigate_req(0,
addr(packet!invReq))
to Distributor

-

Investigate_ind(0,
addr(packet!invInd),true)
to Distributor

-

true
alive subsReq

subsInd

data

elseinvReq invInd

else

5.4 Application Interface

block applicationAdaptation 1(1)

ApplMux

toApp

c1 APPL_init,
APPL_close,
APPL_send,
APPL_setValue,
APPL_getValue

APPL_recv,
APPL_recvValue

c2

Register_req,
UnRegister_req,
Investigate_req,
Subscribe_req,
UnSubscribe_req,
Send

Register_ind,
UnRegister_ind,
Investigate_ind,
Subscribe_ind,
UnSubscribe_ind,
Recv

c1

Copyright © Fraunhofer IESE 2005 52

process ApplMux 1(4)
DCL

app Integer,
name Charstring,
serviceName AddressType /*addr*/,
data Octet_string,
result Boolean;idle

APPL_init
(app)

-

idle

APPL_setValue
(app,name,data)

name

Register_req
(app,addr(data))

log('Register: '//
str(addr(data))//LF)

-

Subscribe_req
(app,addr(data))

log('Subscribe: '//
str(addr(data))//LF)

-

Ping SetTimeout

-

log('UnRegister: '//
name//LF)

for (DCL i Integer:=1,i<=length(services(app)),i+1)
{

serviceName:=addr(services(app)(i));
OUTPUT UnRegister_req(app,serviceName);

}

idle

log('UnSubscribe: '//
name//LF)

for (DCL i Integer:=1,i<=length(services(app)),i+1)
{

serviceName:=addr(services(app)(i));
OUTPUT UnRegister_req(app,serviceName);

}

idle

'Register'

'Subscribe'

'Ping' 'Timeout'

else

'UnRegister' 'UnSubscribe'

process ApplMux 2(4)

idle

Register_ind
(app,serviceName,result)

log('Register: '//
str(serviceName)

//' : '//boToS(result)//LF)

result

APPL_recvValue
(app,'Register',
mkstring(i2o(1)))

services(app):=
services(app)//

mkstring(ostr(serviceName));

-

APPL_recvValue
(app,'Register',
mkstring(i2o(0)))

-

Subscribe_ind
(app,serviceName,result)

log('Subscribe: '//
str(serviceName)

//' : '//boToS(result)//LF)

result

APPL_recvValue
(app,'Subscribe',
mkstring(i2o(1)))

services(app):=
services(app)//

mkstring(ostr(serviceName));

-

APPL_recvValue
(app,'Subscribe',
mkstring(i2o(0)))

-

true false true
false

Copyright © Fraunhofer IESE 2005 54

process ApplMux 3(4)

DCL
dest Octet_string,
services ID2Name;

NEWTYPE ID2Name Array(Integer,NameList)
ENDNEWTYPE;
NEWTYPE NameList String(Octet_string,empty)
ENDNEWTYPE;

idle

APPL_send
(app,dest,data)

if (length(dest)=0)
dest:=last(services(app));

Send
(app,addr(dest),
data)

-

Recv
(app,serviceName,data)

APPL_recv
(app,ostr(serviceName),
data)

-

idle

APPL_close
(app)

for (DCL i Integer:=1,i<=length(services(app)),i+1)
{

serviceName:=addr(services(app)(i));
OUTPUT UnRegister_req(app,serviceName);

OUTPUT UnSubscribe_req(app,serviceName);
}

Reset(
ApplicationTimeout(app)

)

-

UnRegister_ind
(app,serviceName,result)

if (result=true)
services(app):=(. .);

-

UnSubscribe_ind
(app,serviceName,result)

process ApplMux 4(4)
NEWTYPE TimeoutMap Array(Integer,Integer)
ENDNEWTYPE;
DCL time TimeoutMap;
DCL t Integer;
SYNONYM oneMS Duration=0.001;
Timer ApplicationTimeout(Integer);

SetTimeout

/*#CODE
{

char* ptr=#(data).Bits;
if (#(data).Length==4)

{
int t=*((int*)ptr);

#(time)(#(app))=t*1.5;
}
}
*/

-

Ping

if (time(app)>0) {
t:=time(app);

Set(now+oneMS*float(t),
ApplicationTimeout(app));

}

-

idle

Application_
Timeout(app)

/*#CODE
printf("Application #%d: Timeout\n",(int)#(app));

*/

APPL_close
(app) to SELF

-

Copyright © Fraunhofer IESE 2005 56

5.5 Used Datatypes

process AddressFilter 1(1)

DCL
hostname Charstring,
nrOfIf Integer,
nr,result Integer,
packet RoutingPacket,
data Octet_string;

/*#CODE
#if defined CONTRAST

char name[1024];
#if defined linux

#include <unistd.h>
#else

#include <winsock2.h>
#endif

gethostname(name,1024);
#(hostname)=Charstring(name);

#endif
*/

idle

idle

LAN_interfaces
(nrOfIf)

/*#CODE
printf("Nr. of interfaces: %d\n",(int)#(nrOfIf));

*/

-

LAN_send
(nr,data)

packet!addr:=hostname;
packet!data:=data;

result:=
encode(data,packet);

for (DCL i Integer:=1,i<=nrOfIf,i+1)
OUTPUT LAN_send

(1,data)
via medium;

-

LAN_recv
(nr,data)

result:=
decode(data,packet);

result=0

packet!addr
/=
hostname

LAN_recv
(nr,packet!data)
via User

-

true

true
false

false

package AddressType 1(1)

NEWTYPE AddressType inherits Charstring
OPERATORS ALL;
ADDING OPERATORS
matches: AddressType,AddressType -> Boolean;
addr: Octet_string -> AddressType;
str: AddressType -> Charstring;
ostr: AddressType -> Octet_string;

OPERATOR matches; FPAR a AddressType,b AddressType;RETURNS Boolean;
START;
return a=b;
ENDOPERATOR;

OPERATOR addr; FPAR os Octet_string;RETURNS AddressType;
DCL i Integer;
DCL s AddressType;
START;
task {
for (i:=1,i<=length(os),i+1)
 s:=s//mkstring(chr(o2i(os(i))));
};
return s;
ENDOPERATOR;

OPERATOR str; FPAR a AddressType;RETURNS Charstring;
DCL i Integer;
DCL s Charstring;
START;
task {
for (i:=1,i<=length(a),i+1)
 s:=s//mkstring(a(i));
};
return s;
ENDOPERATOR;

OPERATOR ostr; FPAR a AddressType;RETURNS Octet_string;
DCL i Integer;
DCL s Octet_string;
START;
task {
for (i:=1,i<=length(a),i+1)
 s:=s//mkstring(i2o(num(a((i)))));
};
return s;
ENDOPERATOR;

ENDNEWTYPE;

