
Micro Protocol Based Design of MacZ -
A Highly Adaptive, Integrated QoS MAC Layer

for Ambient Intelligence Systems

T. Kuhn, I. Fliege

Technical Report 347/05

Micro Protocol Based Design of MacZ -
A Highly Adaptive, Integrated QoS MAC Layer

for Ambient Intelligence Systems

T. Kuhn, I. Fliege

Computer Science Department, University of Kaiserslautern, Kaiserslautern, Germany
{kuhn,fliege}@informatik.uni-kl.de

Technical Report 347/05

Computer Science Department
University of Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany

Technical Report

Micro-protocol based design of MacZ –
A highly Adaptive, Integrated QoS MAC Layer

for Ambient Intelligence Systems

T. Kuhn, I. Fliege

This report introduces MacZ, a hardware-independent MAC layer with QoS capabilities. The
focus is on the basic layer of MacZ that provides common services, in particular distributed
multihop synchronization, signaling of alert messages and conflict detection and resolution
services. The intended application domain for MacZ is within Ambient Intelligence, where
small, energy-efficient, reliable and adaptive communication networks are required. Besides
the hardware independent description, a mapping to an existing hardware using an IEEE
802.15.4 compliant transceiver chipset is performed. MacZ consists of several components
that model distinct protocol functionalities. The components are specified as micro protocols
in SDL and composed using a micro protocol framework.

1. Introduction

1.1. Motivation

Wireless networks have to serve a variety of purposes. As of now, more and more different
types of wireless networks arise – for example wireless LAN networks, wireless AmI
networks, and networks that are designed to operate on a very short distance with a high
bandwidth. All types of these networks are relevant in the domain of ambient intelligence
[LWS04]. Ambient intelligence is about to create an intelligent, yet mostly invisible
environment. The heterogeneity of this environment encourages the use of very different
types of nodes, depending on the tasks that they are performing.

Our work focuses on wireless ad-hoc networks for ambient intelligence systems. In these
networks, the nodes have very scarce resources. However, there are many possible
communication scenarios, ranging from the transmission of infrequent sensor data to the
transmission of multi-media traffic, like audio communication. Also these networks comprise
various types of nodes, differing in to their hardware and energy resources as well as in the
applications that they are executing.

This work describes MacZ, a QoS-MAC layer that can be used as underlying technology for
ambient intelligence networks. Most current MAC layers for wireless ad-hoc networks use a
contention-based media access scheme. For offering a medium that is also capable of
providing QoS-services, we decided to create a time-synchronized medium that can be
divided into contention-based and into contention-free periods to adapt to the needs of an
application.

Since this report describes work in progress, only the finished parts of MacZ are described.
These finished parts are the basic structure of MacZ, the time synchronization mechanism, the
announcement mechanism for specific events and the conflict detection and resolution. Each
of these functionalities forms a logical component, which has been specified as a micro
protocol [FGGS05], a structuring technique for protocol development that has been developed
by our networked systems group at the University of Kaiserslautern.

1.2. Related work

In this section, we survey work related to MacZ, the QoS MAC layer presented in this report.
We structure this survey into approaches to time synchronization and medium access control
in wireless networks. Media access schemes that use contention based reservations only, that
provide no time synchronization among multiple hops, or that require specific hardware like
transceiver chips with configurable frequency hopping or modulation schemes are omitted in
this survey.

1.2.1. Time synchronization in wireless networks

Multiple methodologies exist for achieving time synchronization in wireless networks. One
methodology is the server based synchronization – one server transmits its current clock value
through the network synchronizing all other nodes to its clock value. NTP [Mil94] is a
protocol for server based clock synchronization. Although it is widely used in the Internet, it
has also disadvantages that become especially visible in wireless networks. NTP needs to
transmit the current clock value of one or multiple servers through the network. This makes

the protocol vulnerable to variances in the time required for accessing the wireless media.
Depending on the MAC-protocol being used, these variances can be in the range of several
milliseconds [IEEE03] in wireless networks, yielding those protocols that need to transmit the
current clock value of one node unusable for achieving synchronization at a microsecond
scale across multiple hops.

Another possibility for achieving clock synchronization across a network is to use external
clock receivers, like GPS receivers that also provide a highly accurate clock. Unfortunately,
GPS receivers require a substantial amount of energy, a clear sky view and an additional
receiver. This renders GPS unusable for most time synchronization tasks in wireless
networks.

The methodologies mentioned above attempt to achieve global clock synchronization between
the nodes of a sensor network. An alternative to global clocks are virtual clocks [Lam78].
Lamport proposes virtual clocks for systems where the ordering of events is more important,
than the absolute time of an event. For the design of a distributed MAC layer, the global time
is also not relevant. Rather there is the need that all nodes have an accurate time scale that is
relative to a specific point of time that is equal to all nodes.

A methodology that achieves distributed time synchronization without providing global clock
synchronization is described in [EGE02], introducing a technique called “reference
broadcasts” which synchronizes all receivers around a transmitter node to each other. To
avoid jitter with contention based medium access, only the nodes receiving the broadcast at
almost the same time are synchronized – a transmitter node is not synchronized by its own
broadcast. After receiving a reference broadcast, all nodes exchange their observations about
the reception time of the broadcast. This can be used to create a function for every pair of
nodes that converts clock values from one to another node.

1.2.2. Medium access control in wireless networks

Medium access in wireless AmI networks is usually determined by saving as much energy as
possible. Since most nodes have only scarce energy resources, saving energy is an important
point. Energy can be saved by reducing the time the transceiver chip of every node has to be
active. Retransmissions of packets also cost large amounts of energy at the sender and at the
receiver, so collisions – the main source for retransmissions, are to be avoided as good as
possible.

Current MAC-protocols for sensor networks rely at least partially on contention based media
access. The SMAC protocol presented in [YHE02] is a contention based MAC-protocol that
reduces the energy consumption of nodes by sending them periodically into a sleeping state.
Nodes in 1-hop neighborhood synchronize their sleeping periods to each other. Every node
has only a short period where it wakes up to see if any other node wants to talk to it. [CC02]
proposes a medium access protocol called TBMAC that mixes space division with time
division. All hops within a 1-hop cluster form a cell. Within each cell, a time-slotted medium
is used, while different clusters use different channels for communication. Specific time slots
are used for performing inter-cell communication. [CC02] relies on additional techniques for
obtaining time synchronization and for obtaining the current position of every node.

The work presented in [PDÖ02] uses black bursts for providing a contention based accessing
scheme for wireless networks. The described MAC protocol supports a deadline based
medium access scheme for ad-hoc networks. The description is based on wireless LANs, but
the basic techniques could also be adapted to wireless AmI networks.

ZigBee [IEEE03] has the ability to provide a contention-free period. This is implemented by a
master node sending a beacon that is followed by a fixed number of slots. Between the last
slot and the next beacon, there is a period of time for contention-based access or beacons from
other masters. This beacon-based synchronization only works within the 1-hop range of a
master node. The point coordinator functionality of 802.11 [IEEE97] realizes also a very basic
slotting of the wireless medium by having one station polling the other nodes. However
contention-free and contention-based access periods are mixed with a nondeterministic
switching time, the methodology depends on exactly one master node and it is not usable
across multiple hops. GAMA-PS presented in [MA98] does offer contention-free access
without having the need of synchronizing the network. However, GAMA-PS requires a fully
connected network, so every node has to be able to receive the transmissions of all other
nodes to maintain its reservation tables. This makes this protocol unusable for AmI networks
that usually span multiple hops and contain nodes that periodically turn off their transceiver
chipsets.

1.3. Objectives

Our QoS MAC layer MacZ was designed with multiple applications in mind. To serve a high
variety of applications, reservation-based contention-free access should be possible, as well as
contention-based medium access, for nodes and applications that do not produce regular
traffic. Therefore, MacZ creates a time-synchronized virtual medium. This medium can be
divided into periods with contention-based and contention-free access, supporting both types
of possible traffic. The partitioning is variable in size, so it can be adapted to the needs of a
specific network.

In the domain of ambient intelligence networks, the propagation of alert messages might also
be one of the tasks of a network. Therefore, this MAC layer supports a special technique for
propagating alert messages with high priority through the network. This mechanism can be
seamlessly integrated into the energy saving strategies of every node due to the time-
synchronization of the medium. By adapting the frequency and the position of these signaling
slots, a developer can adapt the propagation characteristics to its specific needs.

Another objective of MacZ is high reliability and the possibility to operate without a fixed
infrastructure. Therefore, two different synchronization algorithms are presented later in this
work, each algorithm with very different characteristics. This also demonstrates the
modularity of MacZ. We have used micro-protocols for specifying the behavior of every
protocol component of the MAC layer. This causes the components of MacZ to be
exchangeable and largely independent of each other. As a result, the developer might
exchange the synchronization algorithms that are presented in this work with different
algorithms without having to adapt the functionality of the other algorithms, as long as the
documented constraints are still met.

1.4. Outline

Section 2 gives a short overview on the general design of MacZ. Section 3 introduces some
basics of wireless medium access and transmission techniques. Section 4 introduces multihop
synchronization and common techniques for achieving it. In Chapter 5, the main part of this
report, the various functionalities of MacZ are presented together with their micro-protocol
based implementations. Section 6 shows an example for the instantiation of MacZ on a
realistic hardware platform. Section 7 draws the conclusions and indicates future work.

2. Overview of MacZ

This section documents the general design of and the general ideas behind MacZ, our QoS
MAC layer for AmI networks. The detailed description of its components and algorithms will
be presented in Section 5.

2.1. Design rationale

The main idea behind our MacZ is, to create a MAC layer that supports a variety of access
mechanisms while still remaining robust to network topology changes. This is achieved by
using a fully distributed approach for node synchronization. Unlike in many wireless and
cellular networks, no designated master node is required. This makes many tasks particularly
challenging, because no central master is available to create and to control the synchronized
medium or to resolve conflicts. This has to be done by fully distributed algorithms, which will
be presented later in this work.

Since in the domain of ambient intelligence a variety of applications are possible, MacZ must
be able to adapt itself to the needs of different applications and node types. Therefore, MacZ
supports a time-synchronized medium that the developer may fill with different slot types, for
example for signaling, for contention-based or for contention-free transmissions. Section 2.2
will regard this in more detail. Also the implementation of the MAC layer itself is modular.
Micro protocols have been used for specifying the behavior of the different, independent
protocol components. A micro protocol is a communication protocol with a single
(distributed) functionality and the required protocol collaboration [FGGS05]. The modularity
facilitates the exchange of protocol units for different application needs. For example, the
micro protocol used for multi-hop synchronization could be changed to a simpler one, if a
network for a single hop scenario is being created.

To achieve the variety of functionalities, two different transmission methodologies are being
used at once: Black bursts and regular packets. Black bursts are transmissions, whose only
information is their length. Since the actual transmitted data is meaningless, these
transmissions are resistant to collisions on the medium. There is a specific protocol
functionality described below that takes care of receiving and decoding black bursts,
including the detection of duplicates due to timer drift of the transmitting nodes. Most
functionalities of the MacZ basic layer (see Figure 1) solely rely on the transmission and
reception of black bursts, while the functionalities of MacZ service layer primarily rely on the
transmission and reception of regular packets.

2.1.1. Basic structure of MacZ

MacZ is structured into two layers; the MacZ basic layer and the MacZ service layer (see
Figure 1). The MacZ basic layer synchronizes the medium and reports the current media state
to the MacZ service layer. The MacZ service layer handles the transmission of the network
traffic and uses therefore the services provided by the MacZ basic layer. As indicated in
Figure 1, the MAC service layer provides services required for applications to transmit
various types of data.

Figure 1: Basic structure of our QoS-MAC layer

MAC basic layer

MAC service layer

Upper layers

Physical layer

Medium

Mac layer

The MacZ basic layer provides basic functionalities to the MacZ service layer. These
functionalities are:

• Multi-Hop synchronization
Time-synchronizes the whole network across multiple hops, creating the premises for
a synchronized medium.

• Signaling of special events to all nodes

Signals the pending transmission of specific, high priority messages to nearby nodes.

• Conflict detection
Detects unsynchronized networks and nodes.

• Conflict resolution

Attempts to resynchronize an unsynchronized network or to join two networks
together.

The MacZ service layer provides more advanced functionalities that depend on the MacZ
basic layer. It is also required for bootstrapping the synchronization process, because
therefore, a defined set of masters must be selected and synchronized. The set of offered
services by the MacZ service layer strongly depends on the state of the MacZ basic layer. As
long as the MacZ basic layer is unsynchronized, only the following services are available:

• Election of masters (available only to MacZ service layer)
• Transmission of alert messages
• Transmission of generic, low-priority messages

The need of the master voting functionality depends on the implementation of the MacZ basic
layer; the other services are always required. Once the MacZ basic layer is in synchronized
state, the following additional services are offered:

• Electing replacements for lost masters
• Signaling of high priority alert messages
• Contention free, reservation based access
• Contention based access with collision avoidance
• Energy saving strategies

As a result of the decomposition of the MacZ layer into a service layer and a basic layer,
further service layers for different purposes could be developed on top of the basic layer.

The MacZ basic layer falls back to unsynchronized state if the synchronization of the medium
fails for any reason. Depending on the used synchronization algorithm, this could be the case
if all elected masters fail at once and no re-election is possible, or if other networks produce
interferences that prevent the MacZ basic layer from synchronizing correctly. In these cases,
the synchronization is lost; the MacZ basic layer attempts to join the networks together and
then starts the re-synchronization sequence whose implementation depends on the used
synchronization algorithm.

2.1.2. Hardware independent design

For the development of MacZ, a clear separation between the MAC layer and the physical
layer was made. As a result, the whole MacZ layer is described in a hardware independent
manner, structured by the use of micro protocols. Protocol functionalities are defined as
separate micro protocols, forming the functionality of this MacZ basic layer as a macro
protocol.

Although the design MacZ is independent of a specific hardware platform, possible
limitations from real hardware platforms must be considered. For example, real platforms are
limited with respect to their computation resources, resulting in delay and jitter when
processing received signals. These effects also influence the possible reaction time to events.
So, whenever possible, the required reaction time to events should be as variable as possible,
to support a variety of hardware platforms and implementation methodologies.

Another constraint is the used transceiver chip or transmission technique. The interface to the
radio hardware must provide at least the following basic functionalities for being able to be
supported by MacZ:

• Sending with clear-channel assessment
• Sending without clear-channel assessment for supporting black bursts
• Reception of ordinary packets
• Notification about the current media state, whether it is idle or busy

For being able to support the reception of black bursts, the interface must either provide a low
delay and jitter signaling for the change of the media state, or the signals for the media state
changes must contain accurate time stamps. This is necessary, because the length of a black
burst must be accurately determined. It must also be possible to transmit a packet of a specific
length at a specific time. The more accuracy of these timings can be guaranteed, the better the
performance of MacZ will be on this platform. Section 6 describes the implementation of our
MAC layer on a real hardware platform.

2.2. Synchronized medium

One requirement of the MAC layer is the variety of applications that are to be supported.
Also, the ability to save energy is crucial, because many nodes will have very limited energy
resources. On the other hand, it must be possible to reserve bandwidth for high-priority and
multimedia applications. This calls for a time synchronized medium that allows idle nodes to
sleep most of their lifetime.

Our time synchronized medium is divided into micro- and macro slots (see Figure 2). Macro
slots have a defined length TMacroSlot. They always start with a synchronization slot, followed
by micro slots which could have signaling and transmission slots assigned to them. The
assignment whether a micro slot is used for signaling or for transmissions is taken by the
developer. Transmission slots are usable by the MAC service layer for either contention-based
or contention-free traffic. The possibility of changing the slot distribution can radically
change the behavior of the network, with respect to possible reaction time on alert messages
and network synchronization errors. It can also change the energy consumption of nodes.

MacZ creates a synchronized medium by time-synchronizing all nodes within a wireless
network. This is achieved by a combination of synchronization-, signaling-, and transmission
slots. The following Figure 2 shows one possible distribution of the different slots on the
medium.

Figure 2: Example slot distribution

TMacroSlot TMacroSlot

Synchronization slot Signaling slot Transmission slots

Macro Slot Macro Slot Macro Slot

As shown in the example presented in Figure 2, the medium is basically divided into three
types of slots. The synchronization slots are used by the multihop synchronization
functionality to ensure that all nodes have synchronized timers – within specific constraints.
The signaling slots are used for two purposes: Conflict resolution, which will be laid out
further in Section 5.8, and the signaling of alert messages. The remaining time is filled with
transmission slots. The MacZ service layer can decide how these slots are to be filled – they
can be filled with (possibly priority based) best-effort traffic, with reservation based
contention-free traffic slots, or with a mix of both.

All nodes must be awake during their signaling slots, to ensure that synchronization errors and
alert signals will be received by every node. Afterwards, every node may decide to sleep
during the transmission slot. This decision usually depends on the needs of the upper layers.
One should note that the slot distribution shown in Figure 2 is only one example for aligning
the different slot types. To facilitate adaptation, the distribution of these slots may be changed
by the developer to reflect the needs of the used hardware or the needs of the domain that
MacZ is about to work in.

2.2.1. Modularity

To provide maximum adaptivity, the developer may align the slots that serve different
purposes to reflect the specific needs of the network. It is also possible to replace the
component that provides, for example, the network synchronization without having to modify
other components. This provides potential for adapting MacZ to different networks, for
example, to single hop scenarios.

To achieve this modularity, every component of MacZ must be solitary. Concretely, this
means for this case, that no slot may depend on the specific location of another slot of a
different type. This ensures that developers may move the locations of slots around, i.e. for
providing better reaction times or energy savings. However, every type of slot must be present
at least once in every macro slot to ensure the functionality of MacZ.

3. Wireless-medium access

For clarifying the specific problems that arise with medium access for wireless networks, the
basics of wireless transmissions must be understood. This section outlines the basics of
wireless medium access and explains a special transmission technique, called “black bursts”.

3.1. Wireless media access

When designing wireless networks, it must be taken into account that a transceiver chip can
only be either in sending or in receive mode. Only in receive mode, the medium state can be
monitored, for example for detecting foreign transmissions. The monitoring of the medium
state is called clear-channel assessment (CCA). Usually, this information is available after the
transceiver chip has been in receiving mode for a certain amount of time. In transmission
mode, there is no possibility for detecting collisions on the medium. Transmissions must be
either resistant to collisions – this is the case for black burst transmissions, or some sort of
collision avoidance must be used. Collision avoidance is complicated by the fact that there is
a period of time where a node can neither send nor receive anything between mode changes of
its transceiver chip. Also, the clear-channel assessment is not working during this period. This
blind period may occur when changing from sending to receive mode or when changing from
receive to sending mode and may have a different length for each change. The duration of the
blind period strongly depends on the used physical layer and raises the chance of collisions,
because the node that is about to transmit data cannot detect transmissions that started in its
blind period and other nodes cannot see its transmission yet. Figure 3 illustrates the different
operation modes of a wireless transceiver chip.

Figure 3: Operation modes of a wireless transceiver chip

Time

tSwTxStart tSwRxStart tTxStart tRxStart tCCAGood

Receive Mode, valid CCA information Mode switching time

Receive Mode, invalid CCA information Transmit mode

Transmitter state

Two time periods can be identified in Figure 3: The time that is required for changing from
transmission to receive mode, TSwitchRX, and the time that is required for changing from
receive to transmission mode, called TSwitchTX. The length of TSwitchRX is defined as the
duration between the beginning of switching to receive mode (tSwRxStart) and the point of time
when the clear channel assessment information becomes valid (tCCAGood). As a result, TSwitchTX
and TSwitchRX are defined as following:

• TSwitchTX = tTxStart - tSwTxStart
• TSwitchRX = tCCAGood - tSwRxStart

So there are two fundamental problems that developers of MAC layers for wireless networks
have to cope with: It is impossible to directly detect collisions on the wireless medium, and
there are periods of time in which the state of the medium is unknown to a node. These
periods of time are before, during, and shortly after a transmission, as indicated in Figure 3.
This makes the design of medium access strategies for wireless networks a challenging task.

Normally, a collision avoidance scheme is used in wireless networks. Basic collision
avoidance schemes select a random number between defined borders that is decreased as long
as the medium is idle for a specific period of time, called “slot time”. For every slot that the
medium is idle, the counter is decreased by one. The slot time is selected to be greater than
TSwitchTX to avoid that nodes finish their counter while another node is already switching to
transmit mode. The probability of collisions decreases with increasing range of the random
numbers. Although collisions are avoided by using this technique, this unpredictable delay,
called “contention window”, is very disturbing for time synchronization. A transmission
technique, that is resistant to collisions, at least to a certain extent, is the transmission of black
bursts. This technique will be described in Section 3.2.

3.2. Black bursts

Frames that are transmitted regardless of their content are referred to as “black bursts”. The
only information that a black burst carries is its length. Unlike regular frames, the payload of
a black burst is not considered to be relevant. Although black bursts are a considerable waste
of bandwidth, due to the limited amount of information that can be transmitted by them, they

also have significant advantages over regular transmissions. Black bursts are resistant to
collisions as long as the length of the burst is not significantly changed – so several nodes
may transmit a burst at the same time and it is still ensured, that every receiving station is able
to understand the burst. Another advantage of black bursts is their increased transmission
range compared to regular transmissions. Since it is not necessary to decode a packet correctly
for receiving a black burst, black bursts can be transmitted over a much greater distance than
conventional frames. These properties make black bursts an interesting mechanism for
synchronization and for emergency signaling.

Drawbacks of black bursts include the collision handling. Although black bursts are quite
resistant to collisions, because the data that they transmit is meaningless anyway, there length
might be changed significantly when two or more black bursts collide. This will change their
length, and as a result of this, also the information that they are carrying. Figure 4 illustrates
this problem.

Figure 4: Possible effects of timer drift to black burst transmissions

Medium

Node 1

Node 2

Medium

Node 1

Node 2

Idle mediumBlack burst

As indicated in Figure 4, there are two possible issues that may rise with black bursts. Two
bursts that are to be sent at the same time may either be received as two separate bursts, due to
timing drift, or they may be melted to a longer burst. Since more than two nodes may be
transmitting a burst at the same time, the length of the burst may vary between the original
length of the black burst DBurst and DBurst + TMaxDrift, where TMaxDrift is the maximum tolerable
timer drift among all transmitting nodes. The MAC layer has to ensure sufficient time
synchronization of all nodes.

Another issue is the separation of one black burst into multiple bursts. This might happen if
two nodes are transmitting a black burst at the same time, with a timer drift that is greater than
the length of the black burst. As a result, receiving nodes will see two black bursts with a
certain idle time between them. This must be handled by the components that are receiving
the black bursts as well as the possible length increase due to overlapping burst transmissions.

4. Multihop synchronization

This section describes the general ideas of our two multihop synchronization algorithms. The
exact specifications and implementations are presented in section 5.

For the creation of a synchronized medium, sufficient synchronization of all hops in the
network is mandatory. Our multi-hop synchronization also has to cope with the constraint that
most nodes in the network will eventually be asleep for most of the time. So there must be
periods of time, called synchronization slots, where all nodes are awake and where all nodes
are synchronized to ensure, that the synchronization drift of a node never exceeds the
maximum allowed drift.

We decided to use physical bursts on the medium as our synchronization methodology as it
was proposed in [EGE02]. In [EGE02], the receiver nodes exchange the information about the
reception time of a frame to achieve a function for converting times between nodes. Since our
only concern is to synchronize all nodes to a specific point of time, the exchanging of
reception time is not necessary. The main idea of our synchronization algorithms is that every
node starts a timer on the reception of a packet that controls the time division of the medium.
This way, all receiver nodes within the 1-hop range of a transmitter node can be synchronized.
However, the transmitter node itself will not be synchronized due to the unpredictable jitter
that might be added by the randomly selected contention window.

In practice, there are some problems that arise: There is always jitter due to contention
window or processing delays, the synchronization depends on one node transmitting the
synchronization frame and wireless networks usually span multiple hops. We will explain in
the following paragraphs, how our two synchronization algorithms overcome these problems.

The first problem for time synchronization that arises is the difference between the point of
time when one node starts to transmit a packet and the point of time when another node is
notified of its reception. This period of time has a specific duration and a specific
unpredictable jitter which originate from four effects:

• MAC delay at the transmitter: This is the time that is required for creating the packet,
for creating the packet header and for transmitting the packet to the transceiver chip.
Since we do not assume preemption during this activity, this time can be considered as
being almost constant.

• MAC accessing delay: This period of time is highly variable and depends on the value
of the contention window that is randomly selected by the MAC layer.

• Propagation delay: This is the time that the wave transmitting the signal requires to get
from one node to another. Although the value of this delay theoretically depends on
the range between two nodes, it is assumed to be constant, because its value is small
enough to be not significant.

• MAC delay at the receiver: This is the time that is required for receiving the packet
header and for either notifying the upper layer or for time stamping the packet. If the
packet is time stamped in an interrupt routine, this time can also be considered as
constant.

So there are three major factors that add a constant value to the time that passes between the
transmission request at the sender and the receive event, and one highly variable time, the
MAC accessing delay. The constant times are known and can be accounted for during time

synchronization. If it would be possible to eliminate the MAC accessing delay, it would be
possible to synchronize a set of receivers not only to each other, but also to the transmitter
node. To eliminate the MAC accessing delay, we decided to use black bursts. Black bursts
carry only their length as information, while their payload is not significant. Therefore, they
are resistant to collisions, because a collision with a packet of the same length renders the
payload unusable, but the length of the packet is not changed. So if two nodes transmit a black
burst with the same length at roughly the same point of time, the message will still be
understood by all other nodes. Since black bursts are resistant to collisions, no media
contention is necessary – so the MAC accessing delay is eliminated by our synchronization
algorithms.

Our synchronization algorithms follow two different paradigms for overcoming the problems
of multihop synchronization and of depending on one master. We have developed two
different algorithms. The first algorithm depends on a set of pre-elected masters that transmit
different sequences of black bursts. Every sequence has a different priority, synchronizing the
entire network to the node transmitting the sequence with highest priority. The second
algorithm does not depend on master nodes – with this algorithm, all nodes are synchronized
in a completely distributed manner. The specifications of these algorithms are presented in
sections 5.3 and 5.4.

5. Services of the MacZ Basic layer

This section describes the details of the functionalities and the realization of the MacZ basic
layer. First, the overall structure is described. Then, the concrete realization of all components
is documented. All algorithms are self-contained – as a result, each algorithm of the MacZ
basic layer may be replaced by another algorithm that realizes the same functionality in a
different manner. This can be used to adapt MacZ to very specific needs of special application
domains.

5.1. Structure overview

Basically, four different services build up the functionality of the MacZ basic layer: The
synchronization service, the signaling service, the conflict detection, the handling of black
burst transmissions and the conflict resolution by transmitting a jamming sequence. Figure 5
outlines the basic structure of the MacZ basic layer.

Figure 5: Structure of the MacZ basic layer

Mac basic layer

Signaling Synchronization

Announce Start

Conflict
Detection

JAM

BlackBurst

MAC service layer

Hardware

As shown in Figure 5, the services of the MacZ basic layer are grouped together into four
groups. The protocol functionalities “Synchronization”, “Announce” and “Start” form the
synchronization group that takes care of synchronizing and re-synchronizing the medium. The
functionalities “ConflictDetection” and “JAM” form the conflict handling group that detects
and propagates conflicts. The functionalities “Signaling” and “BlackBurst” form the
remaining two groups. Each of these functionalities will be described in detail in the
following, specified as a self-contained micro protocol.

5.2. Handling of black bursts

One integral technique that has been used for nearly all of the following algorithms is the
transmission and reception of black bursts. This section describes the micro protocols that
have been specified for sending and receiving black bursts.

5.2.1. General description

The transmission of a black burst is done by sending a frame of a specific length without
checking the clear-channel assessment information of the medium. The reception and
decoding of a black burst is more complex, because the timer drift of a node might change the
recognized size of a specific burst. The actual size of a black burst on the medium may also
vary; this depends on the timer drift of the transmitting nodes. When multiple nodes with a
timer drift of TMaxDrift transmit a black burst at the same time, the length of the burst might be
increased by the value of TMaxDrift. If TMaxDrift is greater than the length of the transmitted
burst, one burst could be visible as two separate bursts on the medium. The micro protocol for
receiving a black burst must be able to handle these effects, and it must also be able to
correctly decode the type of a specific black burst. Also, it must be able to distinguish a black
burst from an ordinary frame. Currently, duplicate black bursts are detected by the short pause
time between them – the protocol functionalities that transmit black bursts must ensure that
the pause time between two regular transmitted bursts is long enough to ensure that this micro
protocol is able to detect the second transmitted black burst as an independent burst.

5.2.2. Types of black bursts

MacZ uses two different types of black bursts, for signaling different types of events. Each of
the two burst types represents, depending on its length, either a 0 or a 1. The length of bursts
with ID 0 and ID 1 is defined as DBurst0 and DBurst1, respectively. The following constraints
must hold for the two types of black bursts.

• DBurst0 > DBurst1 + TMaxDrift + 4*THWJit
Both types of black bursts must be clearly distinguishable from each other, so their
length difference must be greater than the four times timing jitter of the hardware
platform, since the beginning and the end of both bursts must be measured, plus the
maximum possible synchronization jitter, since multiple nodes might send a burst at
the same time (see Figure 6 – the overlapping short bursts of Node 1 and Node 2 with
maximum timer drift TMaxDrift + 4*THWJit are shorter than the long burst that is
transmitted by Node 3). DBurst0 represents the more dominant burst and must therefore
be the longer one.

Figure 6: Overlapping black bursts

Node 1

Node 2

Medium

t1

t1 t2

t1

Node 3

DBurst0

Short burst transmission Idle medium

DBurst1

DBurst1

DBurst0

Long burst transmission

DBurst1 + TMaxDrift + 4*THWJit

TMaxDrift + 4*THWJit

• DBurst0 > DBurst1 + TSwitchRX + TMaxDrift + 4*THWJit
This ensures that a node is able to detect a burst with ID 0, even if it started
transmitting a burst with ID 1 at the same time. The tolerable synchronization jitter
must also be considered when selecting the length of DBurst0 and DBurst1, because the
drift of the transmitting nodes will be between 0 and the maximum synchronization
jitter.

• DBurst0 + 2 * THWJit + TMaxDrift > DMinFrame - 2 * THWJit

All black bursts must be clearly distinguishable from regular frames, whose minimum
length is referred to as DMinFrame. This must still hold, if multiple nodes start
transmitting a maximum length burst with the maximum tolerable synchronization
drift.

5.2.3. Micro protocol design

Figure 7 shows the micro protocol design that encapsulated the black burst decoding and
duplicate detection functionality, specified with SDL [SDL100].

Initialize all local variables

burstIdleTime := 0;
checkBurstIdleTime := false;
lastBurstEnd := 0;
burstStart := 0;

idle

idle Current media state is idle

Notification of a possible
change of the media state

CCA_BB
 (mediaIdle)

mediaIdle Check if the media
state did really change

Media changed its state to busy,
store the current time as starting
time for possible black burst

burstStart := now

Check if this burst is independent or
a duplicate

CALL isBurstIndependent
 (burstStart,
 lastBurstEnd,
 checkBurstIdleTime)

Announce the start of a
black burst or packet

StartBurst_Sig
 (now)

StartBurst_Syn
 (now)

StartBurst_Cnf
 (now)

StartBurst_Str
 (now)

idle Media is
still idle busy Media is

now busy

false

true

true

false

busy Busy medium

Notification of a possible
change of the media state

CCA_BB
 (mediaIdle)

mediaIdle Check if the media
state did really change

busy The medium
is still busy Get the type of the burst that was just received

burstType := CALL getBurstType
 (burstStart, lastBurstEnd, checkBurstIdleTime)

Store the current time as the ending time
of the last received burst

lastBurstEnd := now

Determine type of burst
and send the notifications

burstType

ShortBurst_Sig
 (burstStart, now)

LongBurst_Sig
 (burstStart, now)

RegularPkt_Sig
 (burstStart, now)

ShortBurst_Syn
 (burstStart, now)

LongBurst_Syn
 (burstStart, now)

RegularPkt_Syn
 (burstStart, now)

ShortBurst_Cnf
 (burstStart, now)

LongBurst_Cnf
 (burstStart, now)

RegularPkt_Cnf
 (burstStart, now)

ShortBurst_Str
 (burstStart, now)

LongBurst_Str
 (burstStart, now)

RegularPkt_Str
 (burstStart, now)

idle idle idle idle

false

true

SmallBurst LargeBurst RegularPacket else

Figure 7: Design of black burst decoding functionality

5.3. Time Synchronization

This section describes our synchronization mechanism, which is based on exchanging black
bursts of different length. The usage of black bursts makes the use of collision avoidance and
medium access strategies unnecessary. It also ensures that a high number of nodes may send
at the same time, without destroying the transmitted information. This is especially important
for multi-hop synchronization in networks that potentially have a large number of nodes.
When broadcasting ordinary time stamps, no collisions must occur during transmission. To
reduce collisions, these networks must either use a large range of backoff slots during medium
contention, or they risk a high number of collisions. This problem is not existent when black
burst transmissions are used for medium synchronization.

Before starting the synchronization mechanism, a set of masters must be elected. These
masters start sending black bursts sequences that are unique for each master in every
synchronization slot. The other nodes start forwarding the most dominant black burst
sequences. All nodes, including the masters, synchronize on the most dominant burst

sequence. If one master fails, all nodes will still be synchronized to one of the remaining
masters – the one that has the most dominant sequence of the remaining masters. Since all
master nodes get synchronized too, there is no need to explicitly synchronize the masters,
once the MacZ basic layer has started synchronizing all nodes. If one or multiple master
nodes fail, the MacZ service layer is notified to revote the remaining masters. When a node
was elected to become a master, it keeps this state until it leaves the network. This is feasible,
because wireless transceivers usually require less energy for sending than for receiving
packets – so no additional energy resources are necessary. This behavior also encourages the
stability of the network, because with every vote due to a lost master, chances rise that a more
stationary node will be elected and keep the master state. The synchronization should be
performed at a rate high enough to ensure, that a few synchronization sequences may be
missed without losing synchronization. This way, the MacZ service layer is able to reelect
masters and to restart synchronization before the MacZ basic layer hat to switch to
unsynchronized state. This will be done by the synchronization algorithm if too many
synchronization slots are omitted. The MacZ service layer is notified when the state of the
medium is changed. Some of the required functionality is expected to be implemented in the
MacZ service layer.

5.3.1. Prerequisites

The distributed synchronization algorithm depends on a set of masters that have been elected
by the MacZ service layer during the startup phase of the network. The MacZ service layer is
also responsible for maintaining the master nodes. For synchronization purposes, only one
master is required – the remaining master nodes serve as backups to ensure the correct
functionality of the medium even if some of the masters fail or leave the network.

5.3.2. Announcement

Before the actual synchronization is started, a specific sequence of short black bursts is
transmitted to announce the beginning of a synchronization phase. This is useful for
synchronizing nodes that are still unsynchronized with the network. Therefore, short bursts
may be used only for synchronization purposes – signaling mechanisms as described in the
following sections will use long bursts. The sequence used for announcing a synchronization
sequence is two short black bursts, separated by an idle period of length DIdle1, (see Section
5.3.3). The announcement is followed by an idle time of the length DIdle1, after which the
synchronization sequence starts. The announcement sequence is transmitted by every node in
the network, regardless of whether it is a master node or not. This ensures that the
announcement sequence is transmitted as far as possible. The micro protocol design is shown
in Figure 8.

disabled

disabled Start the announcement sequence

Announce_REQ

Load the number of announcement
bursts that are to be transmitted

burstCounter :=
 NAnnouncementBursts

Are any bursts to be transmitted

burstCounter = 0

Syncslot TxShortBurst

One burst has been transmitted,
decrease counter by one

disabled burstCounter :=
 burstCounter - 1

Start the waiting timer if
another burst is being transmitted

burstCounter <= 0

Tell the synchronization
protocol that the last burst
was transmitted

Wait for the specified pause
duration before transmitting
another burst

Syncslot SET(now+DIdle1,
 PauseTimer)

disabled enabled

true

false

true

false

enabled

Send the next burst

PauseTimer

Transmit one burst

TxShortBurst

One burst has been transmitted,
decrease counter by one

burstCounter :=
 burstCounter - 1

Start the waiting timer if
another burst is being transmitted

burstCounter <= 0

Tell the synchronization
protocol that the last burst
was transmitted

Wait for the specified pause
duration before transmitting
another burst

Syncslot SET(now+DIdle1, PauseTimer)

disabled enabled

true

false

Figure 8: Design of synchronization announcement

5.3.3. Description

The synchronization algorithm is based on the usage of black burst sequences that are unique
for every master. Masters are elected prior to the starting of the synchronization by the MAC
service layer. For the synchronization, both types of black bursts are used. To ensure an equal
length of every black burst sequence, the idle times between two black bursts must outweigh
the length difference of the black bursts. The idle times following the two types of black
bursts with ID 0 and ID 1 are defined as DIdle0 and DIdle1. The length of the two different idle
times must be selected according to the following criteria:

• DIdle1 = DBurst0 – DBurst1 + DIdle0
The idle times between two bursts must outweigh the length differences of these
bursts.

• DIdle0 must be large enough to guarantee correct processing by the hardware platform.

To each master, a unique synchronization sequence is assigned. Since the sequences must be
unique, the number of transmitted bursts depends on the maximum number of masters in the
network. The bursts with ID 0 are longer, and therefore are considered being dominant. The
master with the lowest master ID 0 has the highest priority and is assigned the most dominant
burst sequence. This sequence consists of bursts with only the ID 0. The length of the
synchronization sequence equals the highest possible master ID. For every master, whose
master ID is above zero, its burst sequence is filled with bursts of ID 1, starting with the last
burst. Table 1 illustrates this for a network with a maximum of four masters.

Master ID Burst sequence
0 000
1 001
2 011
3 111

Table 1: Example burst sequences for every master in the network

Due to the timing constraints explained above, nodes that are transmitting a burst with ID 1
can detect the presence of a master with higher ID in their 1-hop range. Higher IDs have
lower priorities and therefore, contain more bursts with ID 1. The timing of the burst sequence
is to be specified by the developer. Figure 9 illustrates the timing of a black burst sequence.

Figure 9: Timing of a black burst sequence – 2 masters within 1-hop range

Master – ID 1

Medium

Master – ID 2

DBurst0

DBurst0

DIdle0

DIdle0

DIdle1 DBurst1

Synchronization of the medium is performed in phases. When a synchronization slot starts, all
masters start transmitting their unique synchronization sequences that they have been assigned
to during the election process, at the same time. In the first phase, only the nodes within 1-hop
signaling range of a master can hear the burst that is transmitted by the master.

Since a burst representing a 0 is longer than bursts representing a 1, bursts with ID 0 are more
dominant. Master nodes that hear a longer burst than the one they are transmitting will
synchronize on this longer burst. The timing constraints for black bursts ensure that nodes that
are transmitting shorter bursts will be able to hear longer bursts that are transmitted at the
same time. This ensures that also all masters synchronize on the master with the highest
priority, which is represented by the sequence with the most leading zeros. The black burst
sequences also ensure that collisions of the bursts do not harm the synchronization sequence.
At the same time, redundancy is guaranteed, because synchronization takes place, as long as
at least one master is available. If all masters fail at the same time, no synchronization occurs,
and a master re-election in the MacZ service layer is triggered after a number of
synchronization failures. Figure 9 illustrates the transmission of synchronization bursts by two
masters within 1–hop range.

In Figure 9, the two masters with master ID 1 and 2 are in their 1-hop signaling range. The
master with ID 2 detects the presence of the master with the higher ID due to its longer burst

and therefore, is able to synchronize on this master. This way, it is guaranteed that not only
regular nodes, but also all masters synchronize on the master with the highest ID.

When any node receives a black burst sequence that is transmitted by any master, it
synchronizes its medium timer to the end of the first burst. Since the bursts with ID 0 are
dominant, nodes will synchronize on the more dominant masters. After each phase, a pause of
a fixed length is inserted by the transmitting node. The length of this pause depends on the
last burst that was transmitted by this node. The pause time has to outweigh the length
difference of shorter bursts to longer bursts. Therefore, if the last transmitted burst was a burst
with ID 0, a pause with the duration DSyncPause0 is inserted. If the last transmitted burst was of
ID 1, a pause with the duration DSyncPause1 = DSyncPause0 + DBurst0 – DBurst1 is inserted (see Figure
10).

Figure 10: Synchronization pause times

Master – ID 0

Master

Master – ID 1

DSyncPause0

DSyncPause0

DSyncPause1

DIdle0

The length of DSyncPause0 and DSyncPause1 must be known to every node, and it must also be long
enough to guarantee correct processing of the black burst sequence. After the pause has
passed, all nodes that received a synchronization sequence will transmit the most dominant
sequence that they did receive. Since the nodes that received a sequence did synchronize on
its transmitter or transmitters, they will propagate the synchronization one hop further. If any
node receives a synchronization sequence with a higher priority than the one it is transmitting,
it will start transmitting the higher priority sequence in the next phase. This also holds for
master nodes, although, in the next synchronization slot, they will start transmitting their own
sequence again. This ensures that the sequence with the highest priority will be propagated
through the whole network after the number of iterations that represent the maximum
diameter of the network, decreased by one (see Figure 11)

Figure 11: Synchronization across multiple hops

Regular node
1 hop distance to master

Master

Regular node
2 hop distance to master

DSyn0

DSyn1

DSyncPause DSyncPause

DSyncPause DSyncPause

DSyncPause

5.3.4. Termination

Currently, the algorithm terminates after a specific number of synchronization phases. The
number of iterations NIter should be the maximum possible diameter of the network
NMaxDiameter. It is possible to set the number of iterations to a higher value to be on the safe
side. Although it is theoretically possible to change this number at runtime, in our current
design it is specified by the developer. This has the advantage, that the maximum time for
network synchronization can be predicted, which facilitates the possibility for guaranteeing a
specific bandwidth and delay to transmissions – as long as the network remains synchronized.
A reference implementation of this synchronization algorithm for the Chipcon CC2420
Transceiver chip is presented in Section 6.

5.3.5. Synchronization error

Since synchronization is done iteratively, the nodes within 1-hop distance ti the master nodes
are synchronized first. In every iteration, one more hop is synchronized. The achievable
synchronization accuracy with this algorithm depends on the number of hops in the network –
every hop adds its timer jitter THWJit to the maximum drift right after synchronization. For the
tolerable timer drift TMaxDrift of the network, the equation TMaxDrift > NMaxDiameter * THWJit must
hold.

5.3.6. Micro protocol design

The micro protocol design of this synchronization algorithm is currently ongoing work.

5.4. Fully distributed synchronization

This section describes an alternative synchronization algorithm. The main difference of this
algorithm to the synchronization algorithm described in Section 5.3 is the absence of the need
of a set of elected master nodes. However, the synchronization error for every hop might be
significantly higher – depending on the value of TSwitchTX.

5.4.1. Description

This synchronization algorithm works fully distributed across multiple hops. The main benefit
of this algorithm is that the failure of a specific node or of a set of nodes will not disturb the
communication capabilities of the network. This algorithm also synchronizes with black
bursts – however – only one type of black bursts is required. Since long black bursts are also
used for signaling, this algorithm depends solely on short black bursts. Every node transmits
the same synchronization sequence, consisting of a single black burst.

Before the synchronization is started, the announcement sequence described in Section 5.3.2
is transmitted by all nodes in the network. The startup behavior of the network is described
later in this work.

Synchronization of the network is achieved in several phases. The number of necessary
phases depends on the diameter of the network. In every phase, each node will send a black
burst. All nodes will synchronize themselves on the first received burst. This results in all
nodes synchronizing to the first burst within their 1-hop distance. Figure 12 illustrates the
synchronization algorithm.

Figure 12: Synchronization with fully distributed algorithm

Node 1

Node 2

Medium

tId1 tId2 tId3 tId4

tN1

tN2

tId4

tId4

In the example in Figure 12, two nodes communicate over a wireless medium. At the
beginning, both nodes have a timer drift of tN2 – tN1. Every node sends a synchronization burst
at the same “virtual” time. Due to timer drift, these bursts might be transmitted at different
points in real time. Node 1 sends its synchronization burst at time tN1. Node 2 receives the
beginning of the burst at time tN1 plus propagation delay. This will cause Node 2 to
synchronize its virtual time to Node 1, because this Node was the first one transmitting a
synchronization burst. This causes all nodes to synchronize to the first transmitting node
within their 1-hop distance. Node 2 transmits its own burst in this period as soon as possible –
in Figure 12 this is at time tN2. This causes other nodes to possibly synchronize on Node 2 – if
Node 2 is the first transmitting node within their 1-hop distance.

In the next phase, Node 2 will transmit its burst synchronously with Node 1. In Figure 12, this
is at the point of time tId4. This way, all nodes synchronize through the whole network to the
node that was the first transmitting node.

The algorithm terminates after a defined number of phases that equals NMaxDiameter, the
maximum possible diameter of the network. This ensures the predictability of the length of
every synchronization slot. In the case that TSwitchTX is significantly larger than TSwitchRX, it is
also possible to synchronize with the end of black bursts instead of synchronizing with their
beginnings.

5.4.2. Synchronization error

Every hop might add its timing jitter THWJit to the synchronization drift. Since every node
transmits a black burst in every iteration, the achievable accuracy is also decreased by the
length of the blind period prior to sending. During this period, a node is not able to sense the
medium state. This affects the synchronization drift, because a node is only able to detect
bursts that are sent before this period. Therefore, all nodes within 1-hop range cannot
synchronize more accurately than THWJit + 2*TSwitchTX. The reason is that the timer drift of
every node may vary by TSwitchTX either into the future or into the past. As a result, the
accuracy through the complete network with n hops is limited to NMaxDiameter * (THWJit +
2*TSwitchTX).

5.4.3. Comparison

This algorithm requires no master election. However, its maximum possible accuracy is
significantly lower than the accuracy of the algorithm described in Section 5.3. Both
algorithms can be used to synchronize the nodes, which is needed for slotting the medium.
The algorithm described in this section can be used when a slotted medium with low
bandwidth requirements is needed. Since the synchronization drift must be added to the
beginning of every slot, a larger amount of the medium is wasted than it would be necessary
when synchronizing with the algorithm described in Section 5.3. So for applications where a
higher throughput and a more accurate synchronization is necessary, the algorithm with
master election should be used.

5.4.4. Micro protocol design

Figure 13 shows the main parts of the micro protocol design of the multi hop synchronization
functionality.

disabled

*

SynErr_IND

disabled

disabled This microprotocol

is not active yet (1/2)

Start synchronizing
the medium, no master
has been detected

StartSync

Initialize the number
of iterations

remainingIterations
 := NSyncIterations

Check if any iterations
are remaining

remainingIterations > 0

Prepare the burst
transmission

PrepareBurst
 (now)

Transmit the burst

TxShortBurst

disabled syncWait

true

false

disabled This microprotocol

is not active yet (2/2)

An ongoing synchronization
has been detected, so start
synchronizing

Syncslot

Initialize the number
of iterations

remainingIterations
 := NSyncIterations

Wait for the end of the
announcement stage

SET(now+DIdle1,
 announcementTimer)

waitEndAnn

waitEndAnn Wait for the end of the

announcement phase

Pause time after last announcement
burst passed without the reception
of a burst

Received the beginning of a
synchronization burst

announcementTimer StartBurst_Syn
 (startingTime)

startingTime := now

Check if any iterations are remaining
- if this is zero at this point, then no
 synchronization will be performed

remainingIterations > 0

Prepare the burst
transmission

PrepareBurst
 (startingTime)

Transmit the synchronization burst

TxShortBurst

disabled syncWait

true

false

syncWait Idle period after a burst

has been transmitted (1/2)

Received the beginning
of a synchronization burst

StartBurst_Syn
 (startingTime)

Is the received burst an
indication for a new iteration?

(burstStart > startingTime) AND
 ((startingTime - burstStart + DBurst1)
 > MinSyncBurstPauseDuration)

syncWait
Check if any iterations
are remaining

remainingIterations > 0

Start the first micro-
slot of the macroslot

Prepare the burst
transmission

FirstMicroSlot PrepareBurst
 (startingTime)

Transmit the synchronization burst

TxShortBurst

synchronized syncWait

false

true

false

true

syncWait Idle period after a burst

has been transmitted (2/2)

Transmit the next
synchronization burst

syncBurstTimer

Check if any iterations
are remaining

remainingIterations > 0

Start the first micro-
slot of the macroslot

Prepare the burst
transmission

FirstMicroSlot PrepareBurst
 (now)

This timer controls the duration
of a micro slot Transmit the synchronization burst

SET(
 now+DMicroSlot,
 MicroSlot)

TxShortBurst

synchronized syncWait

false

true

synchronized

New macroslot New microslot

MacroSlot MicroSlot

Announce the beginning
of the next macro slot Start the next microslot

Announce_REQ NextMicroSlot

disabled
Announce will re-
activate this micro
protocol when the
announcement has
finished

synchronized

Figure 13: Design of synchronization functionality

5.5. Event signaling methodology

Signaling is done in specific slots of the medium, called “signaling slots”. Our current design
supports the signaling of three different messages: Transmission of an alert message, a
pending master election sequence and a network synchronization error. The first two
messages will be addressed in this section; the network synchronization error will be treated
in section 5.8.

5.5.1. Description

For the signaling of specific events, a mechanism based on black bursts is used. Black bursts
have the advantage that multiple nodes may signal the same events, without loss of
information due to collisions. Also the range of black bursts is higher than the range of
ordinary frames, ensuring that at least every node within 1-hop distance will receive the
signal. As already mentioned in Section 5.2, black bursts of two different lengths are defined.
The developer must ensure that the length of black bursts, the minimum frame length, the
tolerable timer drift of all nodes, and the timing jitter of the operating system are selected
correctly, so that our MacZ is able to distinguish between the two types of black bursts and
regular frames. Since the shorter black bursts are reserved for the announcement of
synchronization sequences, the signaling mechanisms must use the longer black bursts only.

Every node must be awake during all signaling slots. This ensures that all nodes will receive
important signals. When no event has been signaled, nodes may, depending on the needs of
their upper layers, go asleep to save energy. When an event that concerns a node is signaled,
this node must not go asleep. Currently, there are two possible events apart from network
synchronization errors that are signaled: The pending transmission of an alert message and the
pending election of one or multiple synchronization masters. When an alert message is
signaled, all nodes should remain active, for example for supporting to route the message
quickly to its destination. When an upcoming master election is signaled, all nodes that can
act as synchronization masters should remain active and participate on the election.

Currently, a signaling slot is separated into different partitions, where every partition is
reserved for signaling a specific event. The length of a partition is defined as DSigPart. The first
partition number 0 is used for signaling alert messages; the second partition is used for
signaling an upcoming master election (see Figure 14).

Figure 14: Signaling of an alert message

TSigStart
(Partition 0)

TSigEnd Start of
partition 1

DSigPart
Start of

partition 2
Start of

partition 3

In Figure 14, the signaling of an alert message is shown. The last partitions of a signaling slot
are reserved for the detection of synchronization errors. Section 5.6 describes this
functionality in greater detail.

To support the rapid propagation of signals, multiple signaling slots may be inserted in every
macro slot. Every signaling slot helps speeding up the transmissions of signals, because the
signal is transmitted one hop further, but it also consumes energy, because all nodes will have
to be awake during an additional slot, even if no signals are transmitted by any node.

5.5.2. Micro protocol design

The main parts of the design of the signaling functionality are shown in Figure 15.

Initialize local variables

txAlert := false;
txMasterVote := false;

noSigSlot

noSigSlot Currently, we are not

inside a signaling slot

This signal has no relevance
in this state

Signaling slot entered,
first partition

MicroSlot_IND
 (tempint) SigSlot_IND

First partition of the
signaling slot

currentPartition := 0;

Check if an alert signal
is to be transmitted

checkTxAlertSig

noSigSlot sigSlot

sigSlot

Inside partition one
of the signaling slot
(1/3)

One microslot has passed

MicroSlot_IND
 (tempint)

Update the current position
within the signaling slot

currentPartition :=
 currentPartition + 1

Is the signaling slot over?

currentPartition

checkTxMasterVote

noSigSlot sigSlot sigSlot

1>= DSigSlot else

sigSlot

Inside partition one
of the signaling slot
(2/3)

Received an alert
signal

LongBurst_Sig
 (startTime, endTime)

Determine the meaning of
the black burst

currentPartition

Received a voting signal Received an alert message

SigMasterVote_IND SigAlert_IND

sigSlot sigSlot sigSlot

1 0else

*

SigAlert_REQ

txAlert := true

-

SigMasterVote_REQ

txMasterVote := true

-

Figure 15: Signaling functionality

5.6. User defined signaling

In addition to signaling slots used for alert and master election signaling, the MacZ basic layer
also offers signaling slots for user defined purposes. Normally, using such a service is only
feasible for the MacZ service layer – it depends on the realization of this layer whether the
user defined signaling mechanism is also available to the upper layers.

5.6.1. Description

The user defined signaling is similar to the signaling mechanism that is described in Section
5.4, with the exception that any possible black burst sequence that fits into the user defined
signaling slots may be used. Therefore, the conflict detection is not active during these slots.
To ensure that freshly powered-up nodes will not wrongly detect a black burst sequence
inside user defined signaling slots as the start of a synchronization sequence, only long black
bursts may be used for user defined signaling. The MacZ basic layer cares about transmitting
the bursts at the correct time and reports received bursts to the MacZ service layer.

5.6.2. Micro protocol design

The design of this specific component is ongoing work.

5.7. Conflict detection

Whenever a time-synchronized medium is created, there must be a mechanism to detect
unsynchronized nodes or networks that may cause interferences. The time synchronization of
a network is mandatory for the functionality of the synchronization, signaling and contention-
free algorithms, because unsynchronized nodes that are transmitting bursts or packets in these
slots may cause collisions or may hide regular signals. Therefore, a conflict detection
algorithm must be implemented.

5.7.1. Description

Conflicts may arise when two networks, that are not synchronized, come close to each other.
Due to the fact that most nodes will probably be sleeping, this might not be detected for a
while. Two possible detection strategies can be implemented:

• Detecting synchronization errors at the MacZ basic layer
• Detecting synchronization errors at the MacZ service layer

The MacZ service layer can detect network synchronization errors, when unexpected frames
are being received, for example frames with an unknown network id or frames that are sent by
an unknown node within a reserved time slot. Since the MacZ service layer is not treated in
this report, its detection capabilities will be regarded as “detected by upper layers”. Apart
from having to rely on the upper layers for network error detection, the MacZ basic layer can
detect network errors also on its own. For this purpose, signaling slots are used.

During signaling slots, every node that is not transmitting a signal must be listening to the
medium. Nodes must also listen to partitions of the signaling slots in whose they are not
transmitting a signal in. Since only the first part of every signaling slot is used for signaling,
the remaining slot is expected to be idle. If unexpected transmissions are detected in these
signaling slots – either frames that are too long to be black bursts or unexpected burst
sequences, a conflict has been detected by the MacZ basic layer. This information is then sent
to all component of the MacZ basic layer and also to the MacZ service layer. Only those
signaling slots that are defined in Section 5.4 are used for conflict detection. Since user
defined signaling slots, which are introduced in Section 5.6, allow for any user defined burst
sequence, the conflict detection is not performed in these slots.

If a node remains active outside the signaling and synchronization slots, its collision detection
functionality also remains active. The medium is permanently monitored for a sequence of
two short bursts – which would clearly announce a foreign synchronization sequence. The
minimum packet length ensures that no regular traffic can be misinterpreted as a sequence of
two short black bursts. Section 5.8 describes the behavior of a node that detects a foreign or
unsynchronized network.

5.7.2. Micro protocol design

Figure 16 presents the design of the conflict detection functionality of the MacZ basic layer.

disabled Initially, the medium is not synchronized,
so no conflict detection is available

disabled

syncSlot syncSlot - ignore everything here

userSig userSig - ignore everything here

* Every signal indicating a specific basic slot

type is an indication for a synchronized medium

TxSlot_IND

txSlot

SyncSlot_IND

syncSlot

* Every signal indicating a specific basic slot

type is an indication for a synchronized medium

SigSlot_IND

sigSlot

UserSig_IND

userSig

* Go back to unsynchronized state if

one of these signals is received

Conflict is signaled by one
of the upper layers

SynError_REQ

JAM

disabled

NoSync_IND

disabled

txSlot

Tx Slot - listen for unexpected black
bursts, for example a synchronization
announcement sequence

ShortBurst_Cnf
 (startTime, endTime)

SET(now+TXSyncAnnounceDuration,
 announceTimeout)

txSlotBurst

txSlotBurst

ShortBurst_Cnf
 (startTime, endTime) announceTimeout

JAM

SynErr_IND

txSlot txSlot

sigSlot signalling slots - look for short

bursts and for regular packets

RegularPkt_Cnf
 (startTime, endTime)

ShortBurst_Cnf
 (startTime, endTime)

JAM JAM

SynErr_IND SynErr_IND

sigSlot sigSlot

Figure 16: Collision detection functionality

5.8. Conflict resolution

When a conflict has been detected by one node, it must be propagated to all other nodes – to
the nodes that belong to the same network, and also to the conflicting network. The
methodology for propagating this conflict information is described in the following.

5.8.1. Description

When a node detects an unsynchronized network, it will move itself into unsynchronized state
and start sending a jamming sequence of black bursts for the duration of a whole macro slot.
For the jamming sequence, the shorter black bursts with ID 1 are used. Figure 17 illustrates
the jamming sequence. The first jamming burst is transmitted in this example from tMacroSlot to

t1, and then an idle period until the time t2 follows. This is repeated for the duration of a whole
macro slot.

Figure 17: Jamming sequence

tMacroSlot tMacroSlot t1 t2

The jamming sequence is sent for a whole macro slot - this explicitly includes all
synchronization and signaling slots. Within their signaling slot, all nodes within 1-hop
distance will recognize the jamming sequence – even if they are not synchronized with the
network. The signaling slots have to be long enough to hold at least three of the used, short
bursts. This ensures, that the jamming sequence is received, even if other events are being
signaled (see Figure 18).

Figure 18: Jamming sequence within synchronization slot

tSigStart tSigEnd tPauseStart tPauseEnd tPauseEnd tSigEnd

The length of the macro slots of all networks that may probably get in range of each other
must be equal for the jamming algorithm to work reliably. To propagate the information
through all hops of both networks, the jamming sequence must be repeated NMaxDiameter times,
where NMaxDiameter is the maximum number of hops across all networks. This value depends on
the application domain and must be predefined by the developer. If several nodes transmit
jamming sequences at the same time, which is likely to happen, multiple bursts may overlap,
forming a long burst transmission that may even exceed the maximum size of a regular frame.
So the detection of jamming sequences in the signaling component may not rely on detecting
an ideal jamming sequence consisting of short bursts. To avoid interferences from nodes that
have just been powered on, the start-up phase of every node has to be explicitly specified.

5.8.2. Termination

The transmitted jamming sequence terminates, after NMaxDiameter * TMacroSlot time has passed.
After a node has sent the jamming sequence for that period of time, it will start listening on
the medium. To ensure the propagation of the jamming sequence through the whole medium,
every node will wait the amount of time specified by NMaxDiameter * TMacroSlot. After NMaxDiameter
* TMacroSlot has passed, the jamming sequence has propagated through the network. During this
time, the first node has transmitted its jamming sequence. Then it has to wait for at least
NMaxDiameter * TMacroSlot, before the nodes with the maximum distance have transmitted their
complete jamming sequence.

After a node has waited the time specified by NMaxDiameter * TMacroSlot, it terminates its jamming
algorithm and triggers the algorithm that controls the startup phase, which is described in the
next section.

5.8.3. Micro protocol design

Figure 19 shows the design of the jamming functionality of MacZ.

disabled

enabled_sfd

jammingTimer SFD_JAM
 (tempBool)

SET(
 now+JamIdleDuration,
 jamIdleTimer)

SET(now+PauseDuration, jamIdleTimer)

wait_end enabled_wait

enabled_wait

jammingTimer jamIdleTimer

SET(
 now+JamIdleDuration,
 jamIdleTimer)

TxShortBurst

wait_end enabled_sfd

wait_end

jamIdleTimer

JamEnd_IND

disabled

disabled

JAM

SET(now+JamDuration, jammingTimer)

TxShortBurst

enabled_sfd

Figure 19: Design of the jamming functionality

5.9. Startup phase

The startup is performed after powering on a node, or after a jam sequence has been
transmitted.

5.9.1. Description

When the startup is triggered, a node waits for NMaxDiameter + 1 macro slots, so every node
waits for the time specified by (NMaxDiameter + 1) * TMacroSlot before it starts synchronizing the
network. There are two reasons for this behavior:

• The first reason is that this idle time gives the node the possibility of synchronizing with
an already existing network. If it receives a synchronization announcement sequence
within this period of time, it will start synchronizing with the preceding synchronization
sequence.

• The second reason is that it must be ensured that all nodes are ready for starting
resynchronization after a jamming sequence has been transmitted.

Every node will wait for the time specified by (NMaxDiameter + 1) * TMacroSlot before it triggers
the startup algorithm, so a idle time ensures that every node of the network is in the startup
phase.

After NStartupDelay has passed without hearing the announcement sequence, the node starts with
an unsynchronized medium. The synchronization service of this node then begins
synchronizing the medium. The actual synchronization behavior depends on the used
algorithm. The synchronization algorithm described in Section 5.3 will start by using the
MacZ service layer and an unsynchronized medium for electing an initial set of master nodes.
The alternative algorithm, described in Section 5.4 will start without having to elect any
master nodes.

5.9.2. Micro protocol design

Figure 20 shows the micro-protocol design of the startup phase that is triggered after
synchronization was lost or whenever a node is powered on.

SET
 (now+StartupDelay,
 startupTimeout)

remainingBursts :=
 NAnnouncementBursts

enabled This protocol functionality is
enabled only during startup

enabled Enabled state - listen for
announcement bursts

ShortBurst_Str
 (startTime, endTime)

SET(now + AccounceMaxEndToEndDuration,
 announceTimeout)

remainingBursts :=
 remainingBursts - 1

remainingBursts > 0

disabled rxAnnounce

false true

rxAnnounce

announceTimeout ShortBurst_Str
 (startTime, endTime)

remainingBursts :=
 NAnnouncementBursts

remainingBursts :=
 remainingBursts - 1

remainingBursts > 0

Syncslot

enabled Restart the search for
announcements disabled rxAnnounce

false

true

enabled,

rxAnnounce

startupTimeout

StartSync

disabled

disabled Do nothing in this state

The medium was unsynchronized and the
jamming sequence has ended - restart
synchronizing the medium

JamEnd_IND

Wait for the specified startup time

SET
 (now+StartupDelay,
 startupTimeout)

remainingBursts :=
 NAnnouncementBursts

enabled This protocol functionality is
enabled only during startup

Figure 20: Implementation of start-up phase

5.10. Limited nodes

As an exception to the full featured nodes, which have to be awake during every
synchronization and signaling slot, also limited nodes are possible within the network. These
nodes may also sleep during signaling and synchronization slots. Limited nodes usually have
very low transmission requirements and also very scarce energy resources. The possibility of
being idle during synchronization and signaling slots too, allows for much greater idle time to
these nodes, and as a result, much greater energy savings.

Limited nodes only synchronize prior to transmitting anything. As a result, they are not
synchronized with their network most of the time. Therefore, it is mandatory for them to
participate in at least one synchronization sequence before starting any transmission. The
startup phase for limited nodes is also different to the startup phase of regular nodes. A
limited node will never start synchronizing the medium after it has been powered up. Instead,
it will transmit using the unsynchronized medium if it was not able to synchronize after
NStartupDelay has passed. Limited nodes must not participate in master elections, if the
synchronization mechanism relies on virtual masters. It should also be noted that the higher
layers in the protocol stack must ensure, that the receiver(s) for the frame that is being
transmitted by the limited node is also awake when the limited node wakes up and starts to
transmit. In a network with only limited nodes, it must be ensured that all nodes wake up at a
specific time. Therefore, an application level synchronization protocol may be necessary.

Since limited nodes are not capable of providing a network infrastructure, in most domains a
number of full featured nodes should be available for providing a reliable infrastructure, for
example for providing the time synchronization and multi-hop routing services.

6. Implementation on MicaZ motes

This section describes the adaptation of MacZ a specific hardware platform, which is an
Atmel ATMega128L micro controller and a Chipcon CC2420 transceiver [CC2420] chipset.

6.1. Runtime platform

This section describes the characteristics of the hardware platform “MicaZ”. The relevant
properties of the transceiver chip are described in this section, while the concrete timing of
our MAC layer for this transceiver chip is described in Section 6.2.

6.1.1. Description of the CC2420

The following timing characteristics of the Chipcon CC2420 transceiver are relevant for the
adaptation of MacZ:

Symbol Value Description
tSwitchTX 192 μs Required time for switching from

receiving to transmission mode
tSwitchRX 320 μs Required time for switching from

transmission to receiving mode, until
the CCA signal is valid

NBandwidth

250.000 Bit/s The available bandwidth

tByte

32 μs Required time for transmitting a byte

tPreamble 128 μs Size of preamble of every
transmitted packet.

tHeader 64 μs Size of the physical header, this is
the start of frame delimiter and the
length information on this platform

NMaxSize 121 Bytes Maximum packet length without
physical header and preamble

NMinSize 0 Bytes Minimum packet length without
physical header and preamble

6.1.2. Processor and available timers

The accuracy of the available timers is important, because this is the granularity at which the
length of black bursts can be measured. The available hardware timer was considered to offer
a granularity of THWJit = 32μs. This means, that every measured time has an accuracy of these
32μs, which must be considered when determining values for slot- and black burst sizes.

6.1.3. Domain specific constraints

The application domain of the wireless network is in indoor and outdoor scenarios with a
maximum diameter NMaxDiameter = 5 Hops. The duration of a macro slot is set to 1 second.
Since alert messages may be signaled, two signaling slots per macro slot are assigned, so that
an alert message may pass the network in about 2.5 seconds in the worst case of all nodes
being asleep and depending on the signaling. For the domain, a maximum of 4 concurrent
masters were deemed to be sufficient.

6.2. Adaptation of MacZ

The timing constraints for the MAC layer must be set to values that guarantee that the
equations below hold.

HWJitrMaxDiameteMaxDrift

IdleBurstBurstIdle

HWJitMinPktMaxDriftHWJitBurst

SwitchRXBurstBurst

HWJitMaxDriftBurstBurst

TNT
DDDD

TDTTD
TDD

TTDD

*

*2*2

*4

0101

0

10

10

>
+−=

−>++
+>

++>

Further, the correct processing of all signals from the hardware must be guaranteed. Based on
the data of the runtime platforms, and the domain requirements, the following values for the
MAC layer have been defined:

• TMaxDrift = 192μs
• DIdle0 = 1ms
• DSyncPause0 = 1ms
• DBurst1 = tPreamble + tHeader = 192μs
• DBurst0 = DBurst1 + TMaxDrift + 4 * THWJit + 4 * tByte = 640μs
• DIdle1 = DIdle0 + DBurst0 - DBurst1 = 1,448ms
• DSyncPause1 = DSyncPause0 + DBurst0 - DBurst1 = 1,448ms
• DMinFrame = DBurst0 + 4 * THWJit + TMaxDrift + 2 * tByte = 960μs

6.3. Synchronization duration and accuracy

This section describes the required time and achievable synchronization accuracy when using
the algorithm with master election, described in Section 5.3. With these values, the
synchronization across four hops requires the following amount of time:

1,64 ms are required for transmitting a black burst. For the sequence of two bursts, 3,28ms are
required. This already includes the pause DSyncPause between two iterations (DBurstn + DIdlen +
DBurstm + DSyncPausem).

For synchronizing across a maximum of NMaxDiameter = 5 hops, 3,28ms * 5 - DSyncPause0 =
15,4ms are required, because after the last synchronization iteration, no additional pause is
necessary. If the synchronization sequence ends with a short burst, the additional 448μs of the
longer burst are saved, resulting in 14,952ms for the whole synchronization. The duration of
the synchronization-announcement sequence must be added to this time.

The achievable timer accuracy also depends on the maximum number of hops NMaxDiameter.
Every hop might add a jitter of THWJit to the timer drift, resulting in an accuracy of THWJit *
NMaxDiameter = 160μs.

Since TMaxDrift = DBurst1 in this example, it is possible, due to propagation delay and due to the
hardware jitter, that one short burst is seen as two individual short bursts, if two nodes with
maximum delay are transmitting this burst. All services that can decode short bursts must be
able to handle this.

6.4. Synchronization with fully distributed algorithm

This section describes the achievable accuracy and required time for synchronization with the
fully distributed algorithm described in Section 5.4.

For every iteration of the fully distributed algorithm, only the transmission of one black burst
is required. Every burst is to be followed by the smallest idle time DIdle0. So one iteration has
the duration DBurst1+ DIdle0 = 1,192ms. For synchronizing across a maximum of NMaxDiameter =
5 hops, 1,192ms * 5 = 5.96ms is required. This is much faster than the master based algorithm
which needs to transmit multiple bursts in every iteration.

The achievable timer accuracy is substantially lower when the fully distributed algorithm is
used. Every hop adds THWJit + 2 * TSwitchTX to the maximum synchronization error. For a
maximum diameter of 5 hops, the guaranteed maximum synchronization time with this
algorithm is THWJit + 2 * TSwitchTX * NMaxDiameter = 2,08ms.

7. Conclusion & future work

We have presented MacZ, an adaptive QoS MAC layer that provides a decentralized
synchronization of a wireless ad-hoc network. By changing the distribution and frequency of
the transmission slots, the network developer can adapt MacZ to the needs of a specific
application or domain. MacZ does not limit the number of nodes – however, the maximum
diameter of the network must be predefined to ensure a correct synchronization for both
algorithms. Removing this limitation is an area for future work.

The synchronized medium is able to offer a predictable set of time slots, which supports
reservations for bandwidth and delay, as well as contention-free access to the medium. The
reservation functionalities, as well as the functionalities for providing contention-based access
are part of the MacZ service layer, which is the subject of ongoing work.

The application to a real hardware, as described in Section 6, has shown that the duration of
the synchronization depends largely on the idle times that were chosen. With some
optimization effort, a much shorter and more efficient synchronization sequence could be
possible. To minimize the synchronization error, the accuracy of the hardware timer should be
re-evaluated and probably increased. This would significantly reduce the jitter across multiple
hops.

The possibility of replacing the micro protocols by others that provide the same functionality
could also be evaluated. For example, networks that have an infrastructure could use a
synchronization algorithm that supports a designated master.

8. References

[LWS04] L. Litz, N. Wehn, and B. Schürmann. Research Center "Ambient
Intelligence" at the University of Kaiserslautern. In VDE Kongress 2004,
volume 1, pages 19-24, Berlin/Germany, 2004. VDE Verlag, ISBN 3-
8007-28273.

[FGGS05] I. Fliege, A. Geraldy, R. Gotzhein, P. Schaible: A Flexible Micro Protocol
Framework. In D. Amyot, A.W. Williams (Eds.), System Modeling and
Analysis, Lecture Notes in Computer Science 3319, Springer, 2005, pp.
224-236.

[Mil94] D. L. Mills. Internet Time Synchronization: The Network Time Protocol. In
Zhonghua Yang and T. Anthony Marsland (Eds.), Global States and Time
in Distributed Systems. IEEE Computer Society Press, 1994.

[Lam78] Leslie Lamport. Time, Clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7): 558-67, 1978.

[YHE02] W. Ye, J. Heidemann, D. Estrin. An Energy-Efficient MAC Protocol for
Wireless Sensor Networks. In IEEE INFOCOM, New York, June 2002.

[PDÖ02] A. Pal, A. Doğan, F. Özgüner. MAC Layer Protocols for Real-time Traffic
in Ad-hoc Wireless Networks. In IEEE ICPP, 2002.

[CC02] R.Cunningham, V. Cahill. Time Bounded Medium Access Control for Ad
Hoc Networks. In ACM POMC, Toulouse, France, October 2002.

[KRD04] S. Kumar, V. Raghavan, J. Deng. Medium Access Control Protocols for ad
hoc wireless networks: a survey. Elsevier Ad-Hoc Networks Journal, 2004.

[EGE02] J. Elson, L. Girod and D. Estrin. Fine-Grained Network Time
Synchronization using Reference Broadcasts. Proceedings of the 5th
Symposium on Operating Systems Design and Implementation (OSDI),

Boston, MA, December 2002.

[MA98] A. Muir, J.J. Garcia-Luna-Aceves. An Efficient packet sensing MAC
protocol for wireless networks. Mobile Networks Applic. 3 (3), pp. 221-
234, 1998

[IEEE97] IEEE 802.11 Working group. Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specification. 1997.

[IEEE03] IEEE 802.15 WPAN™ Task Group 4. Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks. 2003.

[CC2420] Chipcon CC2420 Datasheet.
http://www.chipcon.com/files/CC2420_Data_Sheet_1_2.pdf

[SDL100] SDL standard. http://www.sdl-forum.org/Publications/Standards.htm

	1. Introduction
	1.1. Motivation
	1.2. Related work
	1.2.1. Time synchronization in wireless networks
	1.2.2. Medium access control in wireless networks

	1.3. Objectives
	1.4. Outline

	2. Overview of MacZ
	2.1. Design rationale
	2.1.1. Basic structure of MacZ
	2.1.2. Hardware independent design

	2.2. Synchronized medium
	2.2.1. Modularity

	3. Wireless-medium access
	3.1. Wireless media access
	3.2. Black bursts

	4. Multihop synchronization
	5. Services of the MacZ Basic layer
	5.1. Structure overview
	5.2. Handling of black bursts
	5.2.1. General description
	5.2.2. Types of black bursts
	5.2.3. Micro protocol design

	5.3. Time Synchronization
	5.3.1. Prerequisites
	5.3.2. Announcement
	5.3.3. Description
	5.3.4. Termination
	5.3.5. Synchronization error
	5.3.6. Micro protocol design

	5.4. Fully distributed synchronization
	5.4.1. Description
	5.4.2. Synchronization error
	5.4.3. Comparison
	5.4.4. Micro protocol design

	5.5. Event signaling methodology
	5.5.1. Description
	5.5.2. Micro protocol design

	5.6. User defined signaling
	5.6.1. Description
	5.6.2. Micro protocol design

	5.7. Conflict detection
	5.7.1. Description
	5.7.2. Micro protocol design

	5.8. Conflict resolution
	5.8.1. Description
	5.8.2. Termination
	5.8.3. Micro protocol design

	5.9. Startup phase
	5.9.1. Description
	5.9.2. Micro protocol design

	5.10. Limited nodes

	6. Implementation on MicaZ motes
	6.1. Runtime platform
	6.1.1. Description of the CC2420
	6.1.2. Processor and available timers
	6.1.3. Domain specific constraints

	6.2. Adaptation of MacZ
	6.3. Synchronization duration and accuracy
	6.4. Synchronization with fully distributed algorithm

	7. Conclusion & future work
	8. References
	tr347_05_cover.pdf
	Micro Protocol Based Design of MacZ - A Highly Adaptive, Integrated QoS MAC Layer for Ambient Intelligence Systems
	Technical Report 347/05
	Computer Science Department University of Kaiserslautern Postfach 3049 67653 Kaiserslautern Germany

