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This report introduces MacZ, a hardware-independent MAC layer with QoS capabilities. The 
focus is on the basic layer of MacZ that provides common services, in particular distributed 
multihop synchronization, signaling of alert messages and conflict detection and resolution 
services. The intended application domain for MacZ is within Ambient Intelligence, where 
small, energy-efficient, reliable and adaptive communication networks are required. Besides 
the hardware independent description, a mapping to an existing hardware using an IEEE 
802.15.4 compliant transceiver chipset is performed. MacZ consists of several components 
that model distinct protocol functionalities. The components are specified as micro protocols 
in SDL and composed using a micro protocol framework. 



1. Introduction 

1.1. Motivation 

Wireless networks have to serve a variety of purposes. As of now, more and more different 
types of wireless networks arise – for example wireless LAN networks, wireless AmI 
networks, and networks that are designed to operate on a very short distance with a high 
bandwidth. All types of these networks are relevant in the domain of ambient intelligence 
[LWS04]. Ambient intelligence is about to create an intelligent, yet mostly invisible 
environment. The heterogeneity of this environment encourages the use of very different 
types of nodes, depending on the tasks that they are performing. 

Our work focuses on wireless ad-hoc networks for ambient intelligence systems. In these 
networks, the nodes have very scarce resources. However, there are many possible 
communication scenarios, ranging from the transmission of infrequent sensor data to the 
transmission of multi-media traffic, like audio communication. Also these networks comprise 
various types of nodes, differing in to their hardware and energy resources as well as in the 
applications that they are executing.  

This work describes MacZ, a QoS-MAC layer that can be used as underlying technology for 
ambient intelligence networks. Most current MAC layers for wireless ad-hoc networks use a 
contention-based media access scheme. For offering a medium that is also capable of 
providing QoS-services, we decided to create a time-synchronized medium that can be 
divided into contention-based and into contention-free periods to adapt to the needs of an 
application.  

Since this report describes work in progress, only the finished parts of MacZ are described. 
These finished parts are the basic structure of MacZ, the time synchronization mechanism, the 
announcement mechanism for specific events and the conflict detection and resolution. Each 
of these functionalities forms a logical component, which has been specified as a micro 
protocol [FGGS05], a structuring technique for protocol development that has been developed 
by our networked systems group at the University of Kaiserslautern. 

1.2. Related work 

In this section, we survey work related to MacZ, the QoS MAC layer presented in this report. 
We structure this survey into approaches to time synchronization and medium access control 
in wireless networks. Media access schemes that use contention based reservations only, that 
provide no time synchronization among multiple hops, or that require specific hardware like 
transceiver chips with configurable frequency hopping or modulation schemes are omitted in 
this survey. 

1.2.1. Time synchronization in wireless networks 

Multiple methodologies exist for achieving time synchronization in wireless networks. One 
methodology is the server based synchronization – one server transmits its current clock value 
through the network synchronizing all other nodes to its clock value. NTP [Mil94] is a 
protocol for server based clock synchronization. Although it is widely used in the Internet, it 
has also disadvantages that become especially visible in wireless networks. NTP needs to 
transmit the current clock value of one or multiple servers through the network. This makes 



the protocol vulnerable to variances in the time required for accessing the wireless media. 
Depending on the MAC-protocol being used, these variances can be in the range of several 
milliseconds [IEEE03] in wireless networks, yielding those protocols that need to transmit the 
current clock value of one node unusable for achieving synchronization at a microsecond 
scale across multiple hops. 

Another possibility for achieving clock synchronization across a network is to use external 
clock receivers, like GPS receivers that also provide a highly accurate clock. Unfortunately, 
GPS receivers require a substantial amount of energy, a clear sky view and an additional 
receiver. This renders GPS unusable for most time synchronization tasks in wireless 
networks. 

The methodologies mentioned above attempt to achieve global clock synchronization between 
the nodes of a sensor network. An alternative to global clocks are virtual clocks [Lam78]. 
Lamport proposes virtual clocks for systems where the ordering of events is more important, 
than the absolute time of an event. For the design of a distributed MAC layer, the global time 
is also not relevant. Rather there is the need that all nodes have an accurate time scale that is 
relative to a specific point of time that is equal to all nodes.  

A methodology that achieves distributed time synchronization without providing global clock 
synchronization is described in [EGE02], introducing a technique called “reference 
broadcasts” which synchronizes all receivers around a transmitter node to each other. To 
avoid jitter with contention based medium access, only the nodes receiving the broadcast at 
almost the same time are synchronized – a transmitter node is not synchronized by its own 
broadcast. After receiving a reference broadcast, all nodes exchange their observations about 
the reception time of the broadcast. This can be used to create a function for every pair of 
nodes that converts clock values from one to another node.  

1.2.2. Medium access control in wireless networks 

Medium access in wireless AmI networks is usually determined by saving as much energy as 
possible. Since most nodes have only scarce energy resources, saving energy is an important 
point. Energy can be saved by reducing the time the transceiver chip of every node has to be 
active. Retransmissions of packets also cost large amounts of energy at the sender and at the 
receiver, so collisions – the main source for retransmissions, are to be avoided as good as 
possible.  

Current MAC-protocols for sensor networks rely at least partially on contention based media 
access. The SMAC protocol presented in [YHE02] is a contention based MAC-protocol that 
reduces the energy consumption of nodes by sending them periodically into a sleeping state. 
Nodes in 1-hop neighborhood synchronize their sleeping periods to each other. Every node 
has only a short period where it wakes up to see if any other node wants to talk to it. [CC02] 
proposes a medium access protocol called TBMAC that mixes space division with time 
division. All hops within a 1-hop cluster form a cell. Within each cell, a time-slotted medium 
is used, while different clusters use different channels for communication. Specific time slots 
are used for performing inter-cell communication. [CC02] relies on additional techniques for 
obtaining time synchronization and for obtaining the current position of every node. 

The work presented in [PDÖ02] uses black bursts for providing a contention based accessing 
scheme for wireless networks. The described MAC protocol supports a deadline based 
medium access scheme for ad-hoc networks. The description is based on wireless LANs, but 
the basic techniques could also be adapted to wireless AmI networks.  



ZigBee [IEEE03] has the ability to provide a contention-free period. This is implemented by a 
master node sending a beacon that is followed by a fixed number of slots. Between the last 
slot and the next beacon, there is a period of time for contention-based access or beacons from 
other masters. This beacon-based synchronization only works within the 1-hop range of a 
master node. The point coordinator functionality of 802.11 [IEEE97] realizes also a very basic 
slotting of the wireless medium by having one station polling the other nodes. However 
contention-free and contention-based access periods are mixed with a nondeterministic 
switching time, the methodology depends on exactly one master node and it is not usable 
across multiple hops. GAMA-PS presented in [MA98] does offer contention-free access 
without having the need of synchronizing the network. However, GAMA-PS requires a fully 
connected network, so every node has to be able to receive the transmissions of all other 
nodes to maintain its reservation tables. This makes this protocol unusable for AmI networks 
that usually span multiple hops and contain nodes that periodically turn off their transceiver 
chipsets. 

1.3. Objectives 

Our QoS MAC layer MacZ was designed with multiple applications in mind. To serve a high 
variety of applications, reservation-based contention-free access should be possible, as well as 
contention-based medium access, for nodes and applications that do not produce regular 
traffic. Therefore, MacZ creates a time-synchronized virtual medium. This medium can be 
divided into periods with contention-based and contention-free access, supporting both types 
of possible traffic. The partitioning is variable in size, so it can be adapted to the needs of a 
specific network. 

In the domain of ambient intelligence networks, the propagation of alert messages might also 
be one of the tasks of a network. Therefore, this MAC layer supports a special technique for 
propagating alert messages with high priority through the network. This mechanism can be 
seamlessly integrated into the energy saving strategies of every node due to the time-
synchronization of the medium. By adapting the frequency and the position of these signaling 
slots, a developer can adapt the propagation characteristics to its specific needs. 

Another objective of MacZ is high reliability and the possibility to operate without a fixed 
infrastructure. Therefore, two different synchronization algorithms are presented later in this 
work, each algorithm with very different characteristics. This also demonstrates the 
modularity of MacZ. We have used micro-protocols for specifying the behavior of every 
protocol component of the MAC layer. This causes the components of MacZ to be 
exchangeable and largely independent of each other. As a result, the developer might 
exchange the synchronization algorithms that are presented in this work with different 
algorithms without having to adapt the functionality of the other algorithms, as long as the 
documented constraints are still met.  

1.4. Outline 

Section 2 gives a short overview on the general design of MacZ. Section 3 introduces some 
basics of wireless medium access and transmission techniques. Section 4 introduces multihop 
synchronization and common techniques for achieving it. In Chapter 5, the main part of this 
report, the various functionalities of MacZ are presented together with their micro-protocol 
based implementations. Section 6 shows an example for the instantiation of MacZ on a 
realistic hardware platform. Section 7 draws the conclusions and indicates future work. 

 



2. Overview of MacZ 

This section documents the general design of and the general ideas behind MacZ, our QoS 
MAC layer for AmI networks. The detailed description of its components and algorithms will 
be presented in Section 5. 

2.1. Design rationale 

The main idea behind our MacZ is, to create a MAC layer that supports a variety of access 
mechanisms while still remaining robust to network topology changes. This is achieved by 
using a fully distributed approach for node synchronization. Unlike in many wireless and 
cellular networks, no designated master node is required. This makes many tasks particularly 
challenging, because no central master is available to create and to control the synchronized 
medium or to resolve conflicts. This has to be done by fully distributed algorithms, which will 
be presented later in this work. 

Since in the domain of ambient intelligence a variety of applications are possible, MacZ must 
be able to adapt itself to the needs of different applications and node types. Therefore, MacZ 
supports a time-synchronized medium that the developer may fill with different slot types, for 
example for signaling, for contention-based or for contention-free transmissions. Section 2.2 
will regard this in more detail. Also the implementation of the MAC layer itself is modular. 
Micro protocols have been used for specifying the behavior of the different, independent 
protocol components. A micro protocol is a communication protocol with a single 
(distributed) functionality and the required protocol collaboration [FGGS05]. The modularity 
facilitates the exchange of protocol units for different application needs. For example, the 
micro protocol used for multi-hop synchronization could be changed to a simpler one, if a 
network for a single hop scenario is being created.  

To achieve the variety of functionalities, two different transmission methodologies are being 
used at once: Black bursts and regular packets. Black bursts are transmissions, whose only 
information is their length. Since the actual transmitted data is meaningless, these 
transmissions are resistant to collisions on the medium. There is a specific protocol 
functionality described below that takes care of receiving and decoding black bursts, 
including the detection of duplicates due to timer drift of the transmitting nodes. Most 
functionalities of the MacZ basic layer (see Figure 1) solely rely on the transmission and 
reception of black bursts, while the functionalities of MacZ service layer primarily rely on the 
transmission and reception of regular packets.  

2.1.1. Basic structure of MacZ 

MacZ is structured into two layers; the MacZ basic layer and the MacZ service layer (see 
Figure 1). The MacZ basic layer synchronizes the medium and reports the current media state 
to the MacZ service layer. The MacZ service layer handles the transmission of the network 
traffic and uses therefore the services provided by the MacZ basic layer. As indicated in 
Figure 1, the MAC service layer provides services required for applications to transmit 
various types of data. 



 
Figure 1: Basic structure of our QoS-MAC layer 
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The MacZ basic layer provides basic functionalities to the MacZ service layer. These 
functionalities are: 
 

• Multi-Hop synchronization 
Time-synchronizes the whole network across multiple hops, creating the premises for 
a synchronized medium. 

 
• Signaling of special events to all nodes 

Signals the pending transmission of specific, high priority messages to nearby nodes. 
 

• Conflict detection 
Detects unsynchronized networks and nodes. 

 
• Conflict resolution 

Attempts to resynchronize an unsynchronized network or to join two networks 
together. 

 
The MacZ service layer provides more advanced functionalities that depend on the MacZ 
basic layer. It is also required for bootstrapping the synchronization process, because 
therefore, a defined set of masters must be selected and synchronized. The set of offered 
services by the MacZ service layer strongly depends on the state of the MacZ basic layer. As 
long as the MacZ basic layer is unsynchronized, only the following services are available: 

• Election of masters (available only to MacZ service layer) 
• Transmission of alert messages 
• Transmission of generic, low-priority messages 

 



The need of the master voting functionality depends on the implementation of the MacZ basic 
layer; the other services are always required. Once the MacZ basic layer is in synchronized 
state, the following additional services are offered: 

• Electing replacements for lost masters 
• Signaling of high priority alert messages 
• Contention free, reservation based access 
• Contention based access with collision avoidance 
• Energy saving strategies 

 
As a result of the decomposition of the MacZ layer into a service layer and a basic layer, 
further service layers for different purposes could be developed on top of the basic layer. 

The MacZ basic layer falls back to unsynchronized state if the synchronization of the medium 
fails for any reason. Depending on the used synchronization algorithm, this could be the case 
if all elected masters fail at once and no re-election is possible, or if other networks produce 
interferences that prevent the MacZ basic layer from synchronizing correctly. In these cases, 
the synchronization is lost; the MacZ basic layer attempts to join the networks together and 
then starts the re-synchronization sequence whose implementation depends on the used 
synchronization algorithm. 

2.1.2. Hardware independent design 

For the development of MacZ, a clear separation between the MAC layer and the physical 
layer was made. As a result, the whole MacZ layer is described in a hardware independent 
manner, structured by the use of micro protocols. Protocol functionalities are defined as 
separate micro protocols, forming the functionality of this MacZ basic layer as a macro 
protocol. 

Although the design MacZ is independent of a specific hardware platform, possible 
limitations from real hardware platforms must be considered. For example, real platforms are 
limited with respect to their computation resources, resulting in delay and jitter when 
processing received signals. These effects also influence the possible reaction time to events. 
So, whenever possible, the required reaction time to events should be as variable as possible, 
to support a variety of hardware platforms and implementation methodologies. 

Another constraint is the used transceiver chip or transmission technique. The interface to the 
radio hardware must provide at least the following basic functionalities for being able to be 
supported by MacZ: 

• Sending with clear-channel assessment 
• Sending without clear-channel assessment for supporting black bursts 
• Reception of ordinary packets 
• Notification about the current media state, whether it is idle or busy 
 

For being able to support the reception of black bursts, the interface must either provide a low 
delay and jitter signaling for the change of the media state, or the signals for the media state 
changes must contain accurate time stamps. This is necessary, because the length of a black 
burst must be accurately determined. It must also be possible to transmit a packet of a specific 
length at a specific time. The more accuracy of these timings can be guaranteed, the better the 
performance of MacZ will be on this platform. Section 6 describes the implementation of our 
MAC layer on a real hardware platform. 



2.2. Synchronized medium 

One requirement of the MAC layer is the variety of applications that are to be supported. 
Also, the ability to save energy is crucial, because many nodes will have very limited energy 
resources. On the other hand, it must be possible to reserve bandwidth for high-priority and 
multimedia applications. This calls for a time synchronized medium that allows idle nodes to 
sleep most of their lifetime. 

Our time synchronized medium is divided into micro- and macro slots (see Figure 2). Macro 
slots have a defined length TMacroSlot. They always start with a synchronization slot, followed 
by micro slots which could have signaling and transmission slots assigned to them. The 
assignment whether a micro slot is used for signaling or for transmissions is taken by the 
developer. Transmission slots are usable by the MAC service layer for either contention-based 
or contention-free traffic. The possibility of changing the slot distribution can radically 
change the behavior of the network, with respect to possible reaction time on alert messages 
and network synchronization errors. It can also change the energy consumption of nodes. 

MacZ creates a synchronized medium by time-synchronizing all nodes within a wireless 
network. This is achieved by a combination of synchronization-, signaling-, and transmission 
slots. The following Figure 2 shows one possible distribution of the different slots on the 
medium. 

 
Figure 2: Example slot distribution 
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As shown in the example presented in Figure 2, the medium is basically divided into three 
types of slots. The synchronization slots are used by the multihop synchronization 
functionality to ensure that all nodes have synchronized timers – within specific constraints. 
The signaling slots are used for two purposes: Conflict resolution, which will be laid out 
further in Section 5.8, and the signaling of alert messages. The remaining time is filled with 
transmission slots. The MacZ service layer can decide how these slots are to be filled – they 
can be filled with (possibly priority based) best-effort traffic, with reservation based 
contention-free traffic slots, or with a mix of both. 

All nodes must be awake during their signaling slots, to ensure that synchronization errors and 
alert signals will be received by every node. Afterwards, every node may decide to sleep 
during the transmission slot. This decision usually depends on the needs of the upper layers. 
One should note that the slot distribution shown in Figure 2 is only one example for aligning 
the different slot types. To facilitate adaptation, the distribution of these slots may be changed 
by the developer to reflect the needs of the used hardware or the needs of the domain that 
MacZ is about to work in. 

2.2.1. Modularity 



To provide maximum adaptivity, the developer may align the slots that serve different 
purposes to reflect the specific needs of the network. It is also possible to replace the 
component that provides, for example, the network synchronization without having to modify 
other components. This provides potential for adapting MacZ to different networks, for 
example, to single hop scenarios. 

To achieve this modularity, every component of MacZ must be solitary. Concretely, this 
means for this case, that no slot may depend on the specific location of another slot of a 
different type. This ensures that developers may move the locations of slots around, i.e. for 
providing better reaction times or energy savings. However, every type of slot must be present 
at least once in every macro slot to ensure the functionality of MacZ.  

3. Wireless-medium access 

For clarifying the specific problems that arise with medium access for wireless networks, the 
basics of wireless transmissions must be understood. This section outlines the basics of 
wireless medium access and explains a special transmission technique, called “black bursts”.  

3.1. Wireless media access 

When designing wireless networks, it must be taken into account that a transceiver chip can 
only be either in sending or in receive mode. Only in receive mode, the medium state can be 
monitored, for example for detecting foreign transmissions. The monitoring of the medium 
state is called clear-channel assessment (CCA). Usually, this information is available after the 
transceiver chip has been in receiving mode for a certain amount of time. In transmission 
mode, there is no possibility for detecting collisions on the medium. Transmissions must be 
either resistant to collisions – this is the case for black burst transmissions, or some sort of 
collision avoidance must be used. Collision avoidance is complicated by the fact that there is 
a period of time where a node can neither send nor receive anything between mode changes of 
its transceiver chip. Also, the clear-channel assessment is not working during this period. This 
blind period may occur when changing from sending to receive mode or when changing from 
receive to sending mode and may have a different length for each change. The duration of the 
blind period strongly depends on the used physical layer and raises the chance of collisions, 
because the node that is about to transmit data cannot detect transmissions that started in its 
blind period and other nodes cannot see its transmission yet. Figure 3 illustrates the different 
operation modes of a wireless transceiver chip. 



 
Figure 3: Operation modes of a wireless transceiver chip 
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Two time periods can be identified in Figure 3: The time that is required for changing from 
transmission to receive mode, TSwitchRX, and the time that is required for changing from 
receive to transmission mode, called TSwitchTX. The length of TSwitchRX is defined as the 
duration between the beginning of switching to receive mode (tSwRxStart) and the point of time 
when the clear channel assessment information becomes valid (tCCAGood). As a result, TSwitchTX 
and TSwitchRX are defined as following: 

• TSwitchTX = tTxStart  - tSwTxStart 
• TSwitchRX = tCCAGood - tSwRxStart   

 
So there are two fundamental problems that developers of MAC layers for wireless networks 
have to cope with: It is impossible to directly detect collisions on the wireless medium, and 
there are periods of time in which the state of the medium is unknown to a node. These 
periods of time are before, during, and shortly after a transmission, as indicated in Figure 3. 
This makes the design of medium access strategies for wireless networks a challenging task. 

Normally, a collision avoidance scheme is used in wireless networks. Basic collision 
avoidance schemes select a random number between defined borders that is decreased as long 
as the medium is idle for a specific period of time, called “slot time”. For every slot that the 
medium is idle, the counter is decreased by one. The slot time is selected to be greater than 
TSwitchTX to avoid that nodes finish their counter while another node is already switching to 
transmit mode. The probability of collisions decreases with increasing range of the random 
numbers. Although collisions are avoided by using this technique, this unpredictable delay, 
called “contention window”, is very disturbing for time synchronization. A transmission 
technique, that is resistant to collisions, at least to a certain extent, is the transmission of black 
bursts. This technique will be described in Section 3.2. 

3.2. Black bursts 

Frames that are transmitted regardless of their content are referred to as “black bursts”. The 
only information that a black burst carries is its length. Unlike regular frames, the payload of 
a black burst is not considered to be relevant. Although black bursts are a considerable waste 
of bandwidth, due to the limited amount of information that can be transmitted by them, they 



also have significant advantages over regular transmissions. Black bursts are resistant to 
collisions as long as the length of the burst is not significantly changed – so several nodes 
may transmit a burst at the same time and it is still ensured, that every receiving station is able 
to understand the burst. Another advantage of black bursts is their increased transmission 
range compared to regular transmissions. Since it is not necessary to decode a packet correctly 
for receiving a black burst, black bursts can be transmitted over a much greater distance than 
conventional frames. These properties make black bursts an interesting mechanism for 
synchronization and for emergency signaling. 

Drawbacks of black bursts include the collision handling. Although black bursts are quite 
resistant to collisions, because the data that they transmit is meaningless anyway, there length 
might be changed significantly when two or more black bursts collide. This will change their 
length, and as a result of this, also the information that they are carrying. Figure 4 illustrates 
this problem. 

 
Figure 4: Possible effects of timer drift to black burst transmissions 
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As indicated in Figure 4, there are two possible issues that may rise with black bursts. Two 
bursts that are to be sent at the same time may either be received as two separate bursts, due to 
timing drift, or they may be melted to a longer burst. Since more than two nodes may be 
transmitting a burst at the same time, the length of the burst may vary between the original 
length of the black burst DBurst and DBurst + TMaxDrift, where TMaxDrift is the maximum tolerable 
timer drift among all transmitting nodes. The MAC layer has to ensure sufficient time 
synchronization of all nodes. 

Another issue is the separation of one black burst into multiple bursts. This might happen if 
two nodes are transmitting a black burst at the same time, with a timer drift that is greater than 
the length of the black burst. As a result, receiving nodes will see two black bursts with a 
certain idle time between them. This must be handled by the components that are receiving 
the black bursts as well as the possible length increase due to overlapping burst transmissions. 

 



4. Multihop synchronization 

This section describes the general ideas of our two multihop synchronization algorithms. The 
exact specifications and implementations are presented in section 5.  

For the creation of a synchronized medium, sufficient synchronization of all hops in the 
network is mandatory. Our multi-hop synchronization also has to cope with the constraint that 
most nodes in the network will eventually be asleep for most of the time. So there must be 
periods of time, called synchronization slots, where all nodes are awake and where all nodes 
are synchronized to ensure, that the synchronization drift of a node never exceeds the 
maximum allowed drift.  

We decided to use physical bursts on the medium as our synchronization methodology as it 
was proposed in [EGE02]. In [EGE02], the receiver nodes exchange the information about the 
reception time of a frame to achieve a function for converting times between nodes. Since our 
only concern is to synchronize all nodes to a specific point of time, the exchanging of 
reception time is not necessary. The main idea of our synchronization algorithms is that every 
node starts a timer on the reception of a packet that controls the time division of the medium. 
This way, all receiver nodes within the 1-hop range of a transmitter node can be synchronized. 
However, the transmitter node itself will not be synchronized due to the unpredictable jitter 
that might be added by the randomly selected contention window.  

In practice, there are some problems that arise: There is always jitter due to contention 
window or processing delays, the synchronization depends on one node transmitting the 
synchronization frame and wireless networks usually span multiple hops. We will explain in 
the following paragraphs, how our two synchronization algorithms overcome these problems. 

The first problem for time synchronization that arises is the difference between the point of 
time when one node starts to transmit a packet and the point of time when another node is 
notified of its reception. This period of time has a specific duration and a specific 
unpredictable jitter which originate from four effects: 

• MAC delay at the transmitter: This is the time that is required for creating the packet, 
for creating the packet header and for transmitting the packet to the transceiver chip. 
Since we do not assume preemption during this activity, this time can be considered as 
being almost constant. 

• MAC accessing delay: This period of time is highly variable and depends on the value 
of the contention window that is randomly selected by the MAC layer. 

• Propagation delay: This is the time that the wave transmitting the signal requires to get 
from one node to another. Although the value of this delay theoretically depends on 
the range between two nodes, it is assumed to be constant, because its value is small 
enough to be not significant.  

• MAC delay at the receiver: This is the time that is required for receiving the packet 
header and for either notifying the upper layer or for time stamping the packet. If the 
packet is time stamped in an interrupt routine, this time can also be considered as 
constant. 

 
So there are three major factors that add a constant value to the time that passes between the 
transmission request at the sender and the receive event, and one highly variable time, the 
MAC accessing delay. The constant times are known and can be accounted for during time 



synchronization. If it would be possible to eliminate the MAC accessing delay, it would be 
possible to synchronize a set of receivers not only to each other, but also to the transmitter 
node. To eliminate the MAC accessing delay, we decided to use black bursts. Black bursts 
carry only their length as information, while their payload is not significant. Therefore, they 
are resistant to collisions, because a collision with a packet of the same length renders the 
payload unusable, but the length of the packet is not changed. So if two nodes transmit a black 
burst with the same length at roughly the same point of time, the message will still be 
understood by all other nodes. Since black bursts are resistant to collisions, no media 
contention is necessary – so the MAC accessing delay is eliminated by our synchronization 
algorithms. 

Our synchronization algorithms follow two different paradigms for overcoming the problems 
of multihop synchronization and of depending on one master. We have developed two 
different algorithms. The first algorithm depends on a set of pre-elected masters that transmit 
different sequences of black bursts. Every sequence has a different priority, synchronizing the 
entire network to the node transmitting the sequence with highest priority. The second 
algorithm does not depend on master nodes – with this algorithm, all nodes are synchronized 
in a completely distributed manner. The specifications of these algorithms are presented in 
sections 5.3 and 5.4. 

5. Services of the MacZ Basic layer 

This section describes the details of the functionalities and the realization of the MacZ basic 
layer. First, the overall structure is described. Then, the concrete realization of all components 
is documented. All algorithms are self-contained – as a result, each algorithm of the MacZ 
basic layer may be replaced by another algorithm that realizes the same functionality in a 
different manner. This can be used to adapt MacZ to very specific needs of special application 
domains. 

5.1. Structure overview 

Basically, four different services build up the functionality of the MacZ basic layer: The 
synchronization service, the signaling service, the conflict detection, the handling of black 
burst transmissions and the conflict resolution by transmitting a jamming sequence. Figure 5 
outlines the basic structure of the MacZ basic layer. 



 
Figure 5: Structure of the MacZ basic layer 
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As shown in Figure 5, the services of the MacZ basic layer are grouped together into four 
groups. The protocol functionalities “Synchronization”, “Announce” and “Start” form the 
synchronization group that takes care of synchronizing and re-synchronizing the medium. The 
functionalities “ConflictDetection” and “JAM” form the conflict handling group that detects 
and propagates conflicts. The functionalities “Signaling” and “BlackBurst” form the 
remaining two groups. Each of these functionalities will be described in detail in the 
following, specified as a self-contained micro protocol. 

5.2. Handling of black bursts 

One integral technique that has been used for nearly all of the following algorithms is the 
transmission and reception of black bursts. This section describes the micro protocols that 
have been specified for sending and receiving black bursts. 

5.2.1. General description 



The transmission of a black burst is done by sending a frame of a specific length without 
checking the clear-channel assessment information of the medium. The reception and 
decoding of a black burst is more complex, because the timer drift of a node might change the 
recognized size of a specific burst. The actual size of a black burst on the medium may also 
vary; this depends on the timer drift of the transmitting nodes. When multiple nodes with a 
timer drift of TMaxDrift transmit a black burst at the same time, the length of the burst might be 
increased by the value of TMaxDrift. If TMaxDrift is greater than the length of the transmitted 
burst, one burst could be visible as two separate bursts on the medium. The micro protocol for 
receiving a black burst must be able to handle these effects, and it must also be able to 
correctly decode the type of a specific black burst. Also, it must be able to distinguish a black 
burst from an ordinary frame. Currently, duplicate black bursts are detected by the short pause 
time between them – the protocol functionalities that transmit black bursts must ensure that 
the pause time between two regular transmitted bursts is long enough to ensure that this micro 
protocol is able to detect the second transmitted black burst as an independent burst. 

5.2.2. Types of black bursts 

MacZ uses two different types of black bursts, for signaling different types of events. Each of 
the two burst types represents, depending on its length, either a 0 or a 1. The length of bursts 
with ID 0 and ID 1 is defined as DBurst0 and DBurst1, respectively. The following constraints 
must hold for the two types of black bursts.  

• DBurst0 > DBurst1 + TMaxDrift + 4*THWJit 
Both types of black bursts must be clearly distinguishable from each other, so their 
length difference must be greater than the four times timing jitter of the hardware 
platform, since the beginning and the end of both bursts must be measured, plus the 
maximum possible synchronization jitter, since multiple nodes might send a burst at 
the same time (see Figure 6 – the overlapping short bursts of Node 1 and Node 2 with 
maximum timer drift TMaxDrift + 4*THWJit are shorter than the long burst that is 
transmitted by Node 3). DBurst0 represents the more dominant burst and must therefore 
be the longer one. 



 
Figure 6: Overlapping black bursts 
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• DBurst0 > DBurst1 + TSwitchRX + TMaxDrift + 4*THWJit 
This ensures that a node is able to detect a burst with ID 0, even if it started 
transmitting a burst with ID 1 at the same time. The tolerable synchronization jitter 
must also be considered when selecting the length of DBurst0 and DBurst1, because the 
drift of the transmitting nodes will be between 0 and the maximum synchronization 
jitter. 

 
• DBurst0 + 2 * THWJit + TMaxDrift > DMinFrame - 2 * THWJit 

All black bursts must be clearly distinguishable from regular frames, whose minimum 
length is referred to as DMinFrame. This must still hold, if multiple nodes start 
transmitting a maximum length burst with the maximum tolerable synchronization 
drift. 

 
5.2.3. Micro protocol design 

Figure 7 shows the micro protocol design that encapsulated the black burst decoding and 
duplicate detection functionality, specified with SDL [SDL100].  
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Figure 7: Design of black burst decoding functionality 

5.3. Time Synchronization 

This section describes our synchronization mechanism, which is based on exchanging black 
bursts of different length. The usage of black bursts makes the use of collision avoidance and 
medium access strategies unnecessary. It also ensures that a high number of nodes may send 
at the same time, without destroying the transmitted information. This is especially important 
for multi-hop synchronization in networks that potentially have a large number of nodes. 
When broadcasting ordinary time stamps, no collisions must occur during transmission. To 
reduce collisions, these networks must either use a large range of backoff slots during medium 
contention, or they risk a high number of collisions. This problem is not existent when black 
burst transmissions are used for medium synchronization. 

Before starting the synchronization mechanism, a set of masters must be elected. These 
masters start sending black bursts sequences that are unique for each master in every 
synchronization slot. The other nodes start forwarding the most dominant black burst 
sequences. All nodes, including the masters, synchronize on the most dominant burst 



sequence. If one master fails, all nodes will still be synchronized to one of the remaining 
masters – the one that has the most dominant sequence of the remaining masters. Since all 
master nodes get synchronized too, there is no need to explicitly synchronize the masters, 
once the MacZ basic layer has started synchronizing all nodes. If one or multiple master 
nodes fail, the MacZ service layer is notified to revote the remaining masters. When a node 
was elected to become a master, it keeps this state until it leaves the network. This is feasible, 
because wireless transceivers usually require less energy for sending than for receiving 
packets – so no additional energy resources are necessary. This behavior also encourages the 
stability of the network, because with every vote due to a lost master, chances rise that a more 
stationary node will be elected and keep the master state. The synchronization should be 
performed at a rate high enough to ensure, that a few synchronization sequences may be 
missed without losing synchronization. This way, the MacZ service layer is able to reelect 
masters and to restart synchronization before the MacZ basic layer hat to switch to 
unsynchronized state. This will be done by the synchronization algorithm if too many 
synchronization slots are omitted. The MacZ service layer is notified when the state of the 
medium is changed. Some of the required functionality is expected to be implemented in the 
MacZ service layer. 

5.3.1. Prerequisites 

The distributed synchronization algorithm depends on a set of masters that have been elected 
by the MacZ service layer during the startup phase of the network. The MacZ service layer is 
also responsible for maintaining the master nodes. For synchronization purposes, only one 
master is required – the remaining master nodes serve as backups to ensure the correct 
functionality of the medium even if some of the masters fail or leave the network. 

5.3.2. Announcement 

Before the actual synchronization is started, a specific sequence of short black bursts is 
transmitted to announce the beginning of a synchronization phase. This is useful for 
synchronizing nodes that are still unsynchronized with the network. Therefore, short bursts 
may be used only for synchronization purposes – signaling mechanisms as described in the 
following sections will use long bursts. The sequence used for announcing a synchronization 
sequence is two short black bursts, separated by an idle period of length DIdle1, (see Section 
5.3.3). The announcement is followed by an idle time of the length DIdle1, after which the 
synchronization sequence starts. The announcement sequence is transmitted by every node in 
the network, regardless of whether it is a master node or not. This ensures that the 
announcement sequence is transmitted as far as possible. The micro protocol design is shown 
in Figure 8. 
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Figure 8: Design of synchronization announcement 

5.3.3. Description  

The synchronization algorithm is based on the usage of black burst sequences that are unique 
for every master. Masters are elected prior to the starting of the synchronization by the MAC 
service layer. For the synchronization, both types of black bursts are used. To ensure an equal 
length of every black burst sequence, the idle times between two black bursts must outweigh 
the length difference of the black bursts. The idle times following the two types of black 
bursts with ID 0 and ID 1 are defined as DIdle0 and DIdle1. The length of the two different idle 
times must be selected according to the following criteria:  

• DIdle1 = DBurst0 – DBurst1 + DIdle0 
The idle times between two bursts must outweigh the length differences of these 
bursts. 

 
• DIdle0 must be large enough to guarantee correct processing by the hardware platform. 

 
To each master, a unique synchronization sequence is assigned. Since the sequences must be 
unique, the number of transmitted bursts depends on the maximum number of masters in the 
network. The bursts with ID 0 are longer, and therefore are considered being dominant. The 
master with the lowest master ID 0 has the highest priority and is assigned the most dominant 
burst sequence. This sequence consists of bursts with only the ID 0. The length of the 
synchronization sequence equals the highest possible master ID. For every master, whose 
master ID is above zero, its burst sequence is filled with bursts of ID 1, starting with the last 
burst. Table 1 illustrates this for a network with a maximum of four masters. 



Master ID Burst sequence 
0 000 
1 001 
2 011 
3 111 

Table 1: Example burst sequences for every master in the network 

Due to the timing constraints explained above, nodes that are transmitting a burst with ID 1 
can detect the presence of a master with higher ID in their 1-hop range. Higher IDs have 
lower priorities and therefore, contain more bursts with ID 1. The timing of the burst sequence 
is to be specified by the developer. Figure 9 illustrates the timing of a black burst sequence. 

 
Figure 9: Timing of a black burst sequence – 2 masters within 1-hop range 
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Synchronization of the medium is performed in phases. When a synchronization slot starts, all 
masters start transmitting their unique synchronization sequences that they have been assigned 
to during the election process, at the same time. In the first phase, only the nodes within 1-hop 
signaling range of a master can hear the burst that is transmitted by the master.  

Since a burst representing a 0 is longer than bursts representing a 1, bursts with ID 0 are more 
dominant. Master nodes that hear a longer burst than the one they are transmitting will 
synchronize on this longer burst. The timing constraints for black bursts ensure that nodes that 
are transmitting shorter bursts will be able to hear longer bursts that are transmitted at the 
same time. This ensures that also all masters synchronize on the master with the highest 
priority, which is represented by the sequence with the most leading zeros. The black burst 
sequences also ensure that collisions of the bursts do not harm the synchronization sequence. 
At the same time, redundancy is guaranteed, because synchronization takes place, as long as 
at least one master is available. If all masters fail at the same time, no synchronization occurs, 
and a master re-election in the MacZ service layer is triggered after a number of 
synchronization failures. Figure 9 illustrates the transmission of synchronization bursts by two 
masters within 1–hop range. 

In Figure 9, the two masters with master ID 1 and 2 are in their 1-hop signaling range. The 
master with ID 2 detects the presence of the master with the higher ID due to its longer burst 



and therefore, is able to synchronize on this master. This way, it is guaranteed that not only 
regular nodes, but also all masters synchronize on the master with the highest ID. 

When any node receives a black burst sequence that is transmitted by any master, it 
synchronizes its medium timer to the end of the first burst. Since the bursts with ID 0 are 
dominant, nodes will synchronize on the more dominant masters. After each phase, a pause of 
a fixed length is inserted by the transmitting node. The length of this pause depends on the 
last burst that was transmitted by this node. The pause time has to outweigh the length 
difference of shorter bursts to longer bursts. Therefore, if the last transmitted burst was a burst 
with ID 0, a pause with the duration DSyncPause0 is inserted. If the last transmitted burst was of 
ID 1, a pause with the duration DSyncPause1 = DSyncPause0 + DBurst0 – DBurst1 is inserted (see Figure 
10). 

 
Figure 10: Synchronization pause times 
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The length of DSyncPause0 and DSyncPause1 must be known to every node, and it must also be long 
enough to guarantee correct processing of the black burst sequence. After the pause has 
passed, all nodes that received a synchronization sequence will transmit the most dominant 
sequence that they did receive. Since the nodes that received a sequence did synchronize on 
its transmitter or transmitters, they will propagate the synchronization one hop further. If any 
node receives a synchronization sequence with a higher priority than the one it is transmitting, 
it will start transmitting the higher priority sequence in the next phase. This also holds for 
master nodes, although, in the next synchronization slot, they will start transmitting their own 
sequence again. This ensures that the sequence with the highest priority will be propagated 
through the whole network after the number of iterations that represent the maximum 
diameter of the network, decreased by one (see Figure 11) 



 
Figure 11: Synchronization across multiple hops 
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5.3.4. Termination 

Currently, the algorithm terminates after a specific number of synchronization phases. The 
number of iterations NIter should be the maximum possible diameter of the network 
NMaxDiameter. It is possible to set the number of iterations to a higher value to be on the safe 
side. Although it is theoretically possible to change this number at runtime, in our current 
design it is specified by the developer. This has the advantage, that the maximum time for 
network synchronization can be predicted, which facilitates the possibility for guaranteeing a 
specific bandwidth and delay to transmissions – as long as the network remains synchronized. 
A reference implementation of this synchronization algorithm for the Chipcon CC2420 
Transceiver chip is presented in Section 6. 

5.3.5. Synchronization error 

Since synchronization is done iteratively, the nodes within 1-hop distance ti the master nodes 
are synchronized first. In every iteration, one more hop is synchronized. The achievable 
synchronization accuracy with this algorithm depends on the number of hops in the network – 
every hop adds its timer jitter THWJit to the maximum drift right after synchronization. For the 
tolerable timer drift TMaxDrift of the network, the equation TMaxDrift > NMaxDiameter * THWJit must 
hold. 

5.3.6. Micro protocol design 

The micro protocol design of this synchronization algorithm is currently ongoing work. 

5.4. Fully distributed synchronization 

This section describes an alternative synchronization algorithm. The main difference of this 
algorithm to the synchronization algorithm described in Section 5.3 is the absence of the need 
of a set of elected master nodes. However, the synchronization error for every hop might be 
significantly higher – depending on the value of TSwitchTX. 

5.4.1. Description  



This synchronization algorithm works fully distributed across multiple hops. The main benefit 
of this algorithm is that the failure of a specific node or of a set of nodes will not disturb the 
communication capabilities of the network. This algorithm also synchronizes with black 
bursts – however – only one type of black bursts is required. Since long black bursts are also 
used for signaling, this algorithm depends solely on short black bursts. Every node transmits 
the same synchronization sequence, consisting of a single black burst. 

Before the synchronization is started, the announcement sequence described in Section 5.3.2 
is transmitted by all nodes in the network. The startup behavior of the network is described 
later in this work. 

Synchronization of the network is achieved in several phases. The number of necessary 
phases depends on the diameter of the network. In every phase, each node will send a black 
burst. All nodes will synchronize themselves on the first received burst. This results in all 
nodes synchronizing to the first burst within their 1-hop distance. Figure 12 illustrates the 
synchronization algorithm. 

 
Figure 12: Synchronization with fully distributed algorithm 
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In the example in Figure 12, two nodes communicate over a wireless medium. At the 
beginning, both nodes have a timer drift of tN2 – tN1. Every node sends a synchronization burst 
at the same “virtual” time. Due to timer drift, these bursts might be transmitted at different 
points in real time. Node 1 sends its synchronization burst at time tN1. Node 2 receives the 
beginning of the burst at time tN1 plus propagation delay. This will cause Node 2 to 
synchronize its virtual time to Node 1, because this Node was the first one transmitting a 
synchronization burst. This causes all nodes to synchronize to the first transmitting node 
within their 1-hop distance. Node 2 transmits its own burst in this period as soon as possible – 
in Figure 12 this is at time tN2. This causes other nodes to possibly synchronize on Node 2 – if 
Node 2 is the first transmitting node within their 1-hop distance. 

In the next phase, Node 2 will transmit its burst synchronously with Node 1. In Figure 12, this 
is at the point of time tId4. This way, all nodes synchronize through the whole network to the 
node that was the first transmitting node. 



The algorithm terminates after a defined number of phases that equals NMaxDiameter, the 
maximum possible diameter of the network. This ensures the predictability of the length of 
every synchronization slot. In the case that TSwitchTX is significantly larger than TSwitchRX, it is 
also possible to synchronize with the end of black bursts instead of synchronizing with their 
beginnings. 

5.4.2. Synchronization error 

Every hop might add its timing jitter THWJit to the synchronization drift. Since every node 
transmits a black burst in every iteration, the achievable accuracy is also decreased by the 
length of the blind period prior to sending. During this period, a node is not able to sense the 
medium state. This affects the synchronization drift, because a node is only able to detect 
bursts that are sent before this period. Therefore, all nodes within 1-hop range cannot 
synchronize more accurately than THWJit + 2*TSwitchTX. The reason is that the timer drift of 
every node may vary by TSwitchTX either into the future or into the past. As a result, the 
accuracy through the complete network with n hops is limited to NMaxDiameter * (THWJit + 
2*TSwitchTX).  

5.4.3. Comparison 

This algorithm requires no master election. However, its maximum possible accuracy is 
significantly lower than the accuracy of the algorithm described in Section 5.3. Both 
algorithms can be used to synchronize the nodes, which is needed for slotting the medium. 
The algorithm described in this section can be used when a slotted medium with low 
bandwidth requirements is needed. Since the synchronization drift must be added to the 
beginning of every slot, a larger amount of the medium is wasted than it would be necessary 
when synchronizing with the algorithm described in Section 5.3. So for applications where a 
higher throughput and a more accurate synchronization is necessary, the algorithm with 
master election should be used. 

5.4.4. Micro protocol design 

Figure 13 shows the main parts of the micro protocol design of the multi hop synchronization 
functionality.  
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Figure 13: Design of synchronization functionality 

5.5. Event signaling methodology 

Signaling is done in specific slots of the medium, called “signaling slots”. Our current design 
supports the signaling of three different messages: Transmission of an alert message, a 
pending master election sequence and a network synchronization error. The first two 
messages will be addressed in this section; the network synchronization error will be treated 
in section 5.8. 

5.5.1. Description  

For the signaling of specific events, a mechanism based on black bursts is used. Black bursts 
have the advantage that multiple nodes may signal the same events, without loss of 
information due to collisions. Also the range of black bursts is higher than the range of 
ordinary frames, ensuring that at least every node within 1-hop distance will receive the 
signal. As already mentioned in Section 5.2, black bursts of two different lengths are defined. 
The developer must ensure that the length of black bursts, the minimum frame length, the 
tolerable timer drift of all nodes, and the timing jitter of the operating system are selected 
correctly, so that our MacZ is able to distinguish between the two types of black bursts and 
regular frames. Since the shorter black bursts are reserved for the announcement of 
synchronization sequences, the signaling mechanisms must use the longer black bursts only. 

Every node must be awake during all signaling slots. This ensures that all nodes will receive 
important signals. When no event has been signaled, nodes may, depending on the needs of 
their upper layers, go asleep to save energy. When an event that concerns a node is signaled, 
this node must not go asleep. Currently, there are two possible events apart from network 
synchronization errors that are signaled: The pending transmission of an alert message and the 
pending election of one or multiple synchronization masters. When an alert message is 
signaled, all nodes should remain active, for example for supporting to route the message 
quickly to its destination. When an upcoming master election is signaled, all nodes that can 
act as synchronization masters should remain active and participate on the election. 



Currently, a signaling slot is separated into different partitions, where every partition is 
reserved for signaling a specific event. The length of a partition is defined as DSigPart. The first 
partition number 0 is used for signaling alert messages; the second partition is used for 
signaling an upcoming master election (see Figure 14).  
 

 
Figure 14: Signaling of an alert message 
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In Figure 14, the signaling of an alert message is shown. The last partitions of a signaling slot 
are reserved for the detection of synchronization errors. Section 5.6 describes this 
functionality in greater detail. 

To support the rapid propagation of signals, multiple signaling slots may be inserted in every 
macro slot. Every signaling slot helps speeding up the transmissions of signals, because the 
signal is transmitted one hop further, but it also consumes energy, because all nodes will have 
to be awake during an additional slot, even if no signals are transmitted by any node.  

5.5.2. Micro protocol design 

The main parts of the design of the signaling functionality are shown in Figure 15. 

 

Initialize local variables

txAlert := false;
txMasterVote := false;

noSigSlot  
 



 
noSigSlot Currently, we are not 

inside a signaling slot

This signal has no relevance
in this state

Signaling slot entered,
first partition

MicroSlot_IND
  (tempint) SigSlot_IND

First partition of the
signaling slot

currentPartition := 0;

Check if an alert signal 
is to be transmitted

checkTxAlertSig

noSigSlot sigSlot  
 

 
sigSlot

Inside partition one
of the signaling slot
(1/3)

One microslot has passed

MicroSlot_IND
  (tempint)

Update the current position 
within the signaling slot

currentPartition := 
  currentPartition + 1

Is the signaling slot over?

currentPartition

checkTxMasterVote

noSigSlot sigSlot sigSlot

1>= DSigSlot else

 
 

 
sigSlot

Inside partition one
of the signaling slot
(2/3)

Received an alert
signal

LongBurst_Sig
  (startTime, endTime)

Determine the meaning of
the black burst

currentPartition

Received a voting signal Received an alert message

SigMasterVote_IND SigAlert_IND

sigSlot sigSlot sigSlot

1 0else

 

 
*

SigAlert_REQ

txAlert := true

-

SigMasterVote_REQ

txMasterVote := true

-  
 

Figure 15: Signaling functionality 

5.6. User defined signaling 

In addition to signaling slots used for alert and master election signaling, the MacZ basic layer 
also offers signaling slots for user defined purposes. Normally, using such a service is only 
feasible for the MacZ service layer – it depends on the realization of this layer whether the 
user defined signaling mechanism is also available to the upper layers. 

5.6.1. Description  

The user defined signaling is similar to the signaling mechanism that is described in Section 
5.4, with the exception that any possible black burst sequence that fits into the user defined 
signaling slots may be used. Therefore, the conflict detection is not active during these slots. 
To ensure that freshly powered-up nodes will not wrongly detect a black burst sequence 
inside user defined signaling slots as the start of a synchronization sequence, only long black 
bursts may be used for user defined signaling. The MacZ basic layer cares about transmitting 
the bursts at the correct time and reports received bursts to the MacZ service layer.  



5.6.2. Micro protocol design 

The design of this specific component is ongoing work. 

5.7. Conflict detection 

Whenever a time-synchronized medium is created, there must be a mechanism to detect 
unsynchronized nodes or networks that may cause interferences. The time synchronization of 
a network is mandatory for the functionality of the synchronization, signaling and contention-
free algorithms, because unsynchronized nodes that are transmitting bursts or packets in these 
slots may cause collisions or may hide regular signals. Therefore, a conflict detection 
algorithm must be implemented. 

5.7.1. Description  

Conflicts may arise when two networks, that are not synchronized, come close to each other. 
Due to the fact that most nodes will probably be sleeping, this might not be detected for a 
while. Two possible detection strategies can be implemented: 

• Detecting synchronization errors at the MacZ basic layer 
• Detecting synchronization errors at the MacZ service layer 

 
The MacZ service layer can detect network synchronization errors, when unexpected frames 
are being received, for example frames with an unknown network id or frames that are sent by 
an unknown node within a reserved time slot. Since the MacZ service layer is not treated in 
this report, its detection capabilities will be regarded as “detected by upper layers”. Apart 
from having to rely on the upper layers for network error detection, the MacZ basic layer can 
detect network errors also on its own. For this purpose, signaling slots are used.  

During signaling slots, every node that is not transmitting a signal must be listening to the 
medium. Nodes must also listen to partitions of the signaling slots in whose they are not 
transmitting a signal in. Since only the first part of every signaling slot is used for signaling, 
the remaining slot is expected to be idle. If unexpected transmissions are detected in these 
signaling slots – either frames that are too long to be black bursts or unexpected burst 
sequences, a conflict has been detected by the MacZ basic layer. This information is then sent 
to all component of the MacZ basic layer and also to the MacZ service layer. Only those 
signaling slots that are defined in Section 5.4 are used for conflict detection. Since user 
defined signaling slots, which are introduced in Section 5.6, allow for any user defined burst 
sequence, the conflict detection is not performed in these slots.  

If a node remains active outside the signaling and synchronization slots, its collision detection 
functionality also remains active. The medium is permanently monitored for a sequence of 
two short bursts – which would clearly announce a foreign synchronization sequence. The 
minimum packet length ensures that no regular traffic can be misinterpreted as a sequence of 
two short black bursts. Section 5.8 describes the behavior of a node that detects a foreign or 
unsynchronized network. 

5.7.2. Micro protocol design 

Figure 16 presents the design of the conflict detection functionality of the MacZ basic layer.   
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Figure 16: Collision detection functionality 

5.8. Conflict resolution 

When a conflict has been detected by one node, it must be propagated to all other nodes – to 
the nodes that belong to the same network, and also to the conflicting network. The 
methodology for propagating this conflict information is described in the following. 

5.8.1. Description  

When a node detects an unsynchronized network, it will move itself into unsynchronized state 
and start sending a jamming sequence of black bursts for the duration of a whole macro slot. 
For the jamming sequence, the shorter black bursts with ID 1 are used. Figure 17 illustrates 
the jamming sequence. The first jamming burst is transmitted in this example from tMacroSlot to 



t1, and then an idle period until the time t2 follows. This is repeated for the duration of a whole 
macro slot. 

 
Figure 17: Jamming sequence 

tMacroSlot tMacroSlot t1 t2 

The jamming sequence is sent for a whole macro slot - this explicitly includes all 
synchronization and signaling slots. Within their signaling slot, all nodes within 1-hop 
distance will recognize the jamming sequence – even if they are not synchronized with the 
network. The signaling slots have to be long enough to hold at least three of the used, short 
bursts. This ensures, that the jamming sequence is received, even if other events are being 
signaled (see Figure 18). 

 
Figure 18: Jamming sequence within synchronization slot 

tSigStart tSigEnd tPauseStart tPauseEnd tPauseEnd tSigEnd 

The length of the macro slots of all networks that may probably get in range of each other 
must be equal for the jamming algorithm to work reliably. To propagate the information 
through all hops of both networks, the jamming sequence must be repeated NMaxDiameter times, 
where NMaxDiameter is the maximum number of hops across all networks. This value depends on 
the application domain and must be predefined by the developer. If several nodes transmit  
jamming sequences at the same time, which is likely to happen, multiple bursts may overlap, 
forming a long burst transmission that may even exceed the maximum size of a regular frame. 
So the detection of jamming sequences in the signaling component may not rely on detecting 
an ideal jamming sequence consisting of short bursts. To avoid interferences from nodes that 
have just been powered on, the start-up phase of every node has to be explicitly specified. 

5.8.2. Termination 

The transmitted jamming sequence terminates, after NMaxDiameter * TMacroSlot time has passed. 
After a node has sent the jamming sequence for that period of time, it will start listening on 
the medium. To ensure the propagation of the jamming sequence through the whole medium, 
every node will wait the amount of time specified by NMaxDiameter * TMacroSlot. After NMaxDiameter 
* TMacroSlot has passed, the jamming sequence has propagated through the network. During this 
time, the first node has transmitted its jamming sequence. Then it has to wait for at least 
NMaxDiameter * TMacroSlot, before the nodes with the maximum distance have transmitted their 
complete jamming sequence.  



After a node has waited the time specified by NMaxDiameter * TMacroSlot, it terminates its jamming 
algorithm and triggers the algorithm that controls the startup phase, which is described in the 
next section. 

5.8.3. Micro protocol design 

Figure 19 shows the design of the jamming functionality of MacZ. 
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Figure 19: Design of the jamming functionality 

5.9. Startup phase 

The startup is performed after powering on a node, or after a jam sequence has been 
transmitted. 

5.9.1. Description 

When the startup is triggered, a node waits for NMaxDiameter + 1 macro slots, so every node 
waits for the time specified by (NMaxDiameter + 1) * TMacroSlot before it starts synchronizing the 
network. There are two reasons for this behavior: 

• The first reason is that this idle time gives the node the possibility of synchronizing with 
an already existing network. If it receives a synchronization announcement sequence 
within this period of time, it will start synchronizing with the preceding synchronization 
sequence.  

• The second reason is that it must be ensured that all nodes are ready for starting 
resynchronization after a jamming sequence has been transmitted.  

 
Every node will wait for the time specified by (NMaxDiameter + 1) * TMacroSlot before it triggers 
the startup algorithm, so a idle time ensures that every node of the network is in the startup 
phase. 



After NStartupDelay has passed without hearing the announcement sequence, the node starts with 
an unsynchronized medium. The synchronization service of this node then begins 
synchronizing the medium. The actual synchronization behavior depends on the used 
algorithm. The synchronization algorithm described in Section 5.3 will start by using the 
MacZ service layer and an unsynchronized medium for electing an initial set of master nodes. 
The alternative algorithm, described in Section 5.4 will start without having to elect any 
master nodes. 

5.9.2. Micro protocol design 

Figure 20 shows the micro-protocol design of the startup phase that is triggered after 
synchronization was lost or whenever a node is powered on. 
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Figure 20: Implementation of start-up phase 

5.10. Limited nodes 

As an exception to the full featured nodes, which have to be awake during every 
synchronization and signaling slot, also limited nodes are possible within the network. These 
nodes may also sleep during signaling and synchronization slots. Limited nodes usually have 
very low transmission requirements and also very scarce energy resources. The possibility of 
being idle during synchronization and signaling slots too, allows for much greater idle time to 
these nodes, and as a result, much greater energy savings.  

Limited nodes only synchronize prior to transmitting anything. As a result, they are not 
synchronized with their network most of the time. Therefore, it is mandatory for them to 
participate in at least one synchronization sequence before starting any transmission. The 
startup phase for limited nodes is also different to the startup phase of regular nodes. A 
limited node will never start synchronizing the medium after it has been powered up. Instead, 
it will transmit using the unsynchronized medium if it was not able to synchronize after 
NStartupDelay has passed. Limited nodes must not participate in master elections, if the 
synchronization mechanism relies on virtual masters. It should also be noted that the higher 
layers in the protocol stack must ensure, that the receiver(s) for the frame that is being 
transmitted by the limited node is also awake when the limited node wakes up and starts to 
transmit. In a network with only limited nodes, it must be ensured that all nodes wake up at a 
specific time. Therefore, an application level synchronization protocol may be necessary. 

Since limited nodes are not capable of providing a network infrastructure, in most domains a 
number of full featured nodes should be available for providing a reliable infrastructure, for 
example for providing the time synchronization and multi-hop routing services. 

6. Implementation on MicaZ motes 

This section describes the adaptation of MacZ a specific hardware platform, which is an 
Atmel ATMega128L micro controller and a Chipcon CC2420 transceiver [CC2420] chipset.  

6.1. Runtime platform 

This section describes the characteristics of the hardware platform “MicaZ”. The relevant 
properties of the transceiver chip are described in this section, while the concrete timing of 
our MAC layer for this transceiver chip is described in Section 6.2. 

6.1.1. Description of the CC2420 

The following timing characteristics of the Chipcon CC2420 transceiver are relevant for the 
adaptation of MacZ: 

Symbol Value Description 
tSwitchTX 192 μs Required time for switching from 

receiving to transmission mode 
tSwitchRX 320 μs Required time for switching from 

transmission to receiving mode, until 
the CCA signal is valid 

NBandwidth 

 

250.000 Bit/s The available bandwidth 



tByte 

 

32 μs Required time for transmitting a byte 

tPreamble 128 μs Size of preamble of every 
transmitted packet. 

tHeader 64 μs Size of the physical header, this is 
the start of frame delimiter and the 
length information on this platform 

NMaxSize 121 Bytes Maximum packet length without 
physical header and preamble 

NMinSize 0 Bytes Minimum packet length without 
physical header and preamble 

 

6.1.2. Processor and available timers 

The accuracy of the available timers is important, because this is the granularity at which the 
length of black bursts can be measured. The available hardware timer was considered to offer 
a granularity of THWJit = 32μs. This means, that every measured time has an accuracy of these 
32μs, which must be considered when determining values for slot- and black burst sizes. 

6.1.3. Domain specific constraints 

The application domain of the wireless network is in indoor and outdoor scenarios with a 
maximum diameter NMaxDiameter = 5 Hops. The duration of a macro slot is set to 1 second. 
Since alert messages may be signaled, two signaling slots per macro slot are assigned, so that 
an alert message may pass the network in about 2.5 seconds in the worst case of all nodes 
being asleep and depending on the signaling. For the domain, a maximum of 4 concurrent 
masters were deemed to be sufficient. 

6.2. Adaptation of MacZ 

The timing constraints for the MAC layer must be set to values that guarantee that the 
equations below hold. 
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Further, the correct processing of all signals from the hardware must be guaranteed. Based on 
the data of the runtime platforms, and the domain requirements, the following values for the 
MAC layer have been defined:  

• TMaxDrift = 192μs 
• DIdle0   = 1ms 
• DSyncPause0  = 1ms 
• DBurst1   = tPreamble + tHeader     = 192μs 
• DBurst0  = DBurst1 + TMaxDrift + 4 * THWJit + 4 * tByte  = 640μs 
• DIdle1   = DIdle0 + DBurst0 - DBurst1    = 1,448ms 
• DSyncPause1  = DSyncPause0 + DBurst0 - DBurst1   = 1,448ms 
• DMinFrame  = DBurst0 + 4 * THWJit + TMaxDrift + 2 * tByte  = 960μs 



 
6.3. Synchronization duration and accuracy 

This section describes the required time and achievable synchronization accuracy when using 
the algorithm with master election, described in Section 5.3. With these values, the 
synchronization across four hops requires the following amount of time: 

1,64 ms are required for transmitting a black burst. For the sequence of two bursts, 3,28ms are 
required. This already includes the pause DSyncPause between two iterations (DBurstn + DIdlen + 
DBurstm + DSyncPausem). 

For synchronizing across a maximum of NMaxDiameter = 5 hops, 3,28ms * 5 - DSyncPause0 = 
15,4ms are required, because after the last synchronization iteration, no additional pause is 
necessary. If the synchronization sequence ends with a short burst, the additional 448μs of the 
longer burst are saved, resulting in 14,952ms for the whole synchronization. The duration of 
the synchronization-announcement sequence must be added to this time. 

The achievable timer accuracy also depends on the maximum number of hops NMaxDiameter. 
Every hop might add a jitter of THWJit to the timer drift, resulting in an accuracy of THWJit * 
NMaxDiameter = 160μs. 

Since TMaxDrift = DBurst1 in this example, it is possible, due to propagation delay and due to the 
hardware jitter, that one short burst is seen as two individual short bursts, if two nodes with 
maximum delay are transmitting this burst. All services that can decode short bursts must be 
able to handle this. 

6.4. Synchronization with fully distributed algorithm 

This section describes the achievable accuracy and required time for synchronization with the 
fully distributed algorithm described in Section 5.4. 

For every iteration of the fully distributed algorithm, only the transmission of one black burst 
is required. Every burst is to be followed by the smallest idle time DIdle0. So one iteration has 
the duration DBurst1+ DIdle0 = 1,192ms. For synchronizing across a maximum of NMaxDiameter = 
5 hops, 1,192ms * 5 = 5.96ms is required. This is much faster than the master based algorithm 
which needs to transmit multiple bursts in every iteration. 

The achievable timer accuracy is substantially lower when the fully distributed algorithm is 
used. Every hop adds THWJit + 2 * TSwitchTX to the maximum synchronization error. For a 
maximum diameter of 5 hops, the guaranteed maximum synchronization time with this 
algorithm is THWJit + 2 * TSwitchTX * NMaxDiameter  = 2,08ms. 

7. Conclusion & future work 

We have presented MacZ, an adaptive QoS MAC layer that provides a decentralized 
synchronization of a wireless ad-hoc network. By changing the distribution and frequency of 
the transmission slots, the network developer can adapt MacZ to the needs of a specific 
application or domain. MacZ does not limit the number of nodes – however, the maximum 
diameter of the network must be predefined to ensure a correct synchronization for both 
algorithms. Removing this limitation is an area for future work.  



The synchronized medium is able to offer a predictable set of time slots, which supports 
reservations for bandwidth and delay, as well as contention-free access to the medium. The 
reservation functionalities, as well as the functionalities for providing contention-based access 
are part of the MacZ service layer, which is the subject of ongoing work.  

The application to a real hardware, as described in Section 6, has shown that the duration of 
the synchronization depends largely on the idle times that were chosen. With some 
optimization effort, a much shorter and more efficient synchronization sequence could be 
possible. To minimize the synchronization error, the accuracy of the hardware timer should be 
re-evaluated and probably increased. This would significantly reduce the jitter across multiple 
hops. 

The possibility of replacing the micro protocols by others that provide the same functionality 
could also be evaluated. For example, networks that have an infrastructure could use a 
synchronization algorithm that supports a designated master. 
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