
Model-driven by SDL – Improving the
Quality of Networked Systems Development
(Invited Paper)

Reinhard Gotzhein

Networked Systems Group, University of Kaiserslautern,
D-67663 Kaiserslautern, Germany

gotzhein@informatik.uni-kl.de

ABSTRACT. In this paper, we outline our holistic, model-driven approach to the development of
networked systems, with SDL as modeling language. With this approach, distributed applica-
tions and specialized communication protocols can be developed together. The specification of
design models is supported by several reuse methods: SDL patterns, SDL components (in par-
ticular, micro protocols), and SDL framework. Implementations are automatically generated
from design models, and automatically instrumented to interface with different operating sys-
tems and communication technologies. The same design models are also used for performance
simulations, which increases confidence in simulation results. The approach has been applied
to develop various communication protocols for mobile ad-hoc networks, networked systems in
the domains of ambient intelligence and building automation, and telecommunication systems.

RÉSUMÉ. Dans ce papier, nous donnons un aperçu global de notre approche basée sur les mo-
dèles pour le développement de systèmes distribués. Elle utilise SDL comme langage de modé-
lisation. Avec cette approche, des applications distribuées ainsi que des protocoles de commu-
nication spécialisés peuvent être développés simultanément. La spécification des modèles est
appuyée par plusieurs méthodes de réutilisation: les patrons SDL (SDL patterns), les compo-
santes SDL (en particulier, les micro-protocoles), et un cadre de travail SDL (SDL framework).
Des implémentations sont générées automatiquement à partir de modèles de conception, qui
sont aussi utilisées pour la simulation des performances, ce qui augmente la confiance dans les
résultats de simulation. L’approche a été appliquée pour le développement de différents proto-
coles de communication pour réseaux mobiles ad-hoc, de systèmes distribués dans les domaines
tels que intelligence ambiante et bâtiments intelligents, et systèmes de télécommunications.

KEYWORDS: model-driven development, networked systems, communication protocol, design
component, design pattern, design framework, development tools, performance simulation, SDL

MOTS-CLÉS : développement basé sur les modèles, systèmes distribués, protocoles de communi-
cation, composantes de conception, patrons de conception, cadre de travail conceptuel, outils
de développement, simulation de performance, SDL

2e soumission à Notère 2007, le 15 fèvrier 2007.



2 2e soumission à Notère 2007.

1. Introduction

Over the past decade, we have witnessed the entering of modeling techniques into
industrial software development. Part of this success story is due to the UML family
of notations [UML04], which covers several development phases, and is supported
by industrial tools. Another part of this process is the turning towards Model Driven
Development (MDD) [BOO 05], a software engineering approach that places the ab-
stract, formal system model in the center of the development activity. The objective
is that models guide and direct all development activities, ranging from system design
over code generation and deployment to system maintenance, resulting both in quality
improvements and productivity increases.

Model-driven development is promoted by the Object Management Group in the
Model Driven ArchitectureTM (MDA) initiative [MIL 03], and supported by the UML
2.0 [UML04]. To focus on specific system aspects, MDA introduces three kinds of
viewpoints. The computation independent model (CIM) represents the view of the
domain practitioner, omitting all details of the system structure. The platform inde-
pendent model (PIM) defines the view of the system developer by providing structural
and functional details, suitable for use with a number of different platforms of similar
type. The platform specific model (PSM) augments the PIM by details of how the
system uses a specific platform. These models direct the course of understanding, de-
sign, construction, deployment, operation, maintenance, and modification of a system.
Important concerns of MDA are the transformations from CIM to PIM and from PIM
to PSM, and the automatic code generation from models.

To define system views, we have adopted SDL, the Specification and Descrip-
tion Language [ITU 02], standardized by the International Telecommunications Union
(ITU). SDL is a sophisticated formal design language for the specification of net-
worked systems and communication protocols, with graphical syntax, data types,
structuring concepts, support for reuse, and commercial tool environments. Major
industrial application areas of SDL are telecommunication and automotive systems
[SHE 03].

In this work, we outline our holistic, model-driven approach to the development of
networked systems and communication protocols, with SDL as modeling language,
combining some of our research results of the last decade. We start with the design
phase in Section 2, addressing the definition of CIM, PIM, and PSM, and in particular
focusing on the transformation between these views by means of formalized reuse ap-
proaches. Section 3 is devoted to model-driven implementation of SDL designs, using
a complete tool chain for automatic code generation. In Section 4, we elaborate on the
use of SDL designs for performance simulations, supported by several simulators on
different levels of detail. We give conclusions and an outlook in Section 5.



Model-driven by SDL 3

2. Model-driven Design with SDL

CIM
(MSC)

PIM
(SDL)

PSM
(SDL)

Figure 1. Model-driven design

In this section, we outline the early phases of
our model-driven development process, which are
fully in line with the OMG MDA (see Figure 1).
The computation independent model (CIM) is ex-
pressed by message scenarios, specified with MSC
[ITU 01], and informal text. For the specification
of the platform independent and platform specific
models (PIM and PSM), we use SDL, ITU-T’s
Specification and Description Language [ITU 02].
To support the process steps from CIM over PIM to
PSM, we apply several structuring and reuse meth-
ods, which will be surveyed in this section.

2.1. SDL Patterns

SDL patterns [GEP 97] are formalized, generic, possibly distributed solutions to
specific, recurring design problems of networked systems and communication proto-
cols, with SDL as design language. They combine the traditional advantages of design
patterns - reduced development effort, quality improvements, and orthogonal docu-
mentation - with the precision of a formal design language for pattern definition and
pattern application. SDL patterns support reuse-driven design, raise the vocabulary of
the system engineer to a problem-oriented level, assist the discovery and exploitation
of commonalities, and lead to well-justified, high quality designs.

The SDL pattern approach [GEP 97, GOT 03a] consists of the SDL pattern design
process, a notation for the description of generic SDL fragments called PA-SDL (Pat-
tern Annotated SDL), a template and rules for the definition of SDL patterns, an SDL
pattern pool for networked systems and communication protocols, and tool support
[DOR 04]. The pattern pool can be seen as a repository of experience from previous
projects that has been analyzed and documented for reuse purposes.

When SDL patterns are applied, they are selected from the pattern pool, adapted
to their specific application context, and composed. The basis for pattern selection is
an analysis model, consisting of a set of concrete message scenarios, specified with
MSC. Here, the CIM, which also is a collection of message scenarios, forms the start-
ing point. Structural refinements lead to further scenarios, and to the selection of
additional applicable design patterns. When selected, SDL patterns are adapted to a
specific context by replacing generic parts of the pattern definition, yielding pattern
instances. This adaptation is guided by rules and relationships between the concrete
and generic analysis models. Finally, the pattern instance is embedded into the context
specification.



4 2e soumission à Notère 2007.

generate heartbeat and set timer again

EFSM Heartbeat p-specializes AutomatonA

*

–

set (NOW+hbiA, heartbeatT)initializeheartbeat

Timer heartbeatT;

DCL hbiA Duration := ... ;

heartbeatT

heartbeat_n

+

A

set (NOW+hbiA, heartbeatT)

/* heartbeat interval */

stateA

use other signals as heartbeats

set (NOW+hbiA, heartbeatT)

signal_n

state1

state2

Figure 2. SDL design pattern HEARTBEAT: SDL Fragment

An SDL pattern is more than just an incomplete piece of SDL specification. As
detailed, for instance, in [GOT 03b], a pattern definition provides information about
intention, motivation, structural aspects, message scenarios, refinements, cooperative
usage, generic SDL fragment, embedding rules, etc. To give an idea of a pattern
definition, we show part of the generic SDL fragment of the HEARTBEAT pattern
(Figure 2, [FLI 05]). The EFSM Heartbeat describes the heartbeat functionality that
is used together with a watchdog (see Section 2.2) to detect component failures in
distributed systems. During initialization, the timer heartbeatT is set to the duration
of hbiA (heartbeat interval): after its timeout, a non-empty sequence of heartbeat
signals is generated and propagated, with the timer being set again. Other signals may
also be interpreted as heartbeats, a method to save bandwidth. To apply the pattern,
a context AutomatonA is identified and modified, by redefining the start transition
and adding a new transition as defined in Figure 2. Adaptations are constrained by
elements of PA-SDL (see, e.g. [FLI 05]).

The heartbeat pattern has been instantiated in the design of the remote control
of the airship "James Blimp" (see Figure 3). The airship is operated remotely by a
pilot on the ground, who is equipped with joystick attached to his laptop. During
regular operation, control values are communicated via WLAN from the laptop to the
airship periodically, as parameters of the heartbeat signal. If for some reason, e.g.,
control system failure or subsequent heartbeat losses, control values are not received
for a predefined interval, the airship changes into a fail-safe state, switching off all
propellers.

SDL patterns have been applied to the development and reengineering of a variety
of communication protocols and distributed systems. This includes the airship pre-
sented above [FLI 05], the Internet Stream Protocol ST2+ [Röß 98], quality-of-service
protocols on top of the CAN field bus [GEP 98], and the customized communication
system of a light control application [SCH 03]. Over a period of 10 years, the SDL



Model-driven by SDL 5

Figure 3. The airship "James Blimp" in operation

pattern approach has been consolidated and applied in industry, in particular, in UMTS
RNC call processing development, where a quantitative assessment of cost reduction
due to quality improvements has been conducted [GRA 03].

2.2. SDL Components

SDL components [FLI 05] are ready-to-use, self-contained design solutions, which
are selected from a component library and composed. In comparison to SDL patterns,
they are more specific, and can be expressed as a set of SDL agent types. In [GOT 02]
and [GOT 03b], we have extended the idea of SDL components by the concept of
micro protocol. A micro protocol is a distributed component providing one single
protocol functionality - e.g., flow control, loss control, resource reservation - that is
not decomposable into smaller self-contained protocol units. Due to its distributed
nature, interaction between protocol entities is part of the micro protocol definition.

The concept of micro protocol is illustrated in Figure 4, which shows a micro
protocol realized by two micro protocol entities and a collaboration that establishes a
causal relationship between protocol events e1 and e2. Micro protocol entities interact
(directly or indirectly) with their environment, consisting of further (micro) protocol
entities, service providers, and service users. A micro protocol can be defined oper-
ationally by specifying architecture, behavior of protocol entities, and data formats.



6 2e soumission à Notère 2007.

e2e1
micro protocol

micro protocol

micro protocol entity

service users

micro

collaboration

communication service provider

protocol
entities

micro
protocol
entities

service users

Figure 4. The concept of micro protocol

Since entities of a given micro protocol are typically instantiated on different network
nodes, a micro protocol can be seen as a distributed component.

The definition of SDL components is supported by the language concepts SDL
package and SDL type. An SDL package is a collection of type definitions, and used
here to encapsulate all SDL types of a given component. When a component is to
be composed, the SDL package defining the component is imported, and the type
definitions are instantiated in the embedding design context. This especially applies to
micro protocols, where multiple component instances are created on different nodes.

An SDL component definition provides information about intention, interface, ar-
chitecture, message scenarios, used SDL packages, and the SDL design itself. Figure
5 (see [FLI 05]) shows an excerpt of the SDL design, the process type definition of
Watchdog. The component has three transitions. During the start transition, the
heartbeat interval is set. Once active, the watchdog monitors heartbeats (see Section
2.1.), and triggers another component if this signal is not received for the heartbeat
interval hbiW.

The definition is syntactically complete and self-contained, however, it still leaves
room for some adaptations, exploiting SDL language features. For instance, the start
transition may be specialized to redefine the heartbeat interval. Also, new transitions
may be added if other signals are to be interpreted as heartbeats. The watchdog com-
ponent has been instantiated in the design of the remote control of the airship "James
Blimp" (see Figure 3).

SDL components and/or micro protocols have been specified and instantiated in
the development and reengineering of several distributed applications and communi-
cation protocols. In [GOT 03b], we have reengineered SNMPv1 (Simple Network
Management Protocol). In [FLI 05], watchdog and heartbeat components have been
devised and instantiated. In this volume, the application of the micro protocol ap-
proach to the engineering of complex routing protocols for ad-hoc networks is pre-
sented [FLI 07]. Another application can be found in [KUH 06a], where the function-
alities of a MAC layer for Berkeley motes have been defined as micro protocols.



Model-driven by SDL 7

process type Watchdog
1(1)Timer watchdogT;

DCL hbiW Duration;

OPTIONALLY:
extend gate with signal sigX

virtual

hbiW := 1;
redefine with correct
heartbeat interval

active

active

heartbeat

set(NOW + hbiW,
watchdogT)

-

virtual

-

OPTIONALLY:
add new transition to disable watchdog

-> input sigX -> TASK: reset(watchdogT)

REDEFINE:
add output of FailSafeTrigger

signal sigY

REDEFINEGATE:

extend gate with signal sigY

wdIn
heartbeat

wdOut

watchdogT

Figure 5. SDL micro protocol Watchdog: SDL design

2.3. SDL Framework

In a narrower sense, an SDL framework [BRÆ 03] is the skeleton of a (distributed)
system, to be completed by the system designer. To define frameworks, the capability
of SDL to encapsulate object structures and default behavior in frameworks defined by
SDL system types is exploited. Specific applications can then be obtained by defining
subtypes of framework system types, and by redefining virtual types.

In [FLI 04], we have generalized the concept of framework, and have applied it
in the context of micro protocols. To be open to different structuring principles when
designing communication systems, we have defined micro protocol framework as a
set of general principles and rules for the composition of micro protocols. This means
that the system skeleton is not provided in advance, but is tailored in accordance with
the framework.

With the operators provided by the micro protocol framework, micro protocols
can be composed to form protocols with more complex functionalities, called macro
protocols. Micro protocol entities may be composed in sequence, yielding a signal
processing pipeline. Also, they may be composed concurrently, hierarchically, or in
an interleaving manner. In cases of stronger functional dependencies between micro
protocol entities, these generic forms of composition are augmented by additional
synchronization that refers to internal, problem specific protocol aspects.

A particular architecture that may be derived from the generic micro protocol
framework is illustrated in Figure 6. Here, the micro protocol of Figure 4 is com-
posed with further micro protocols in two steps, yielding (macro) protocols with more



8 2e soumission à Notère 2007.

e2e1

macro protocol

service users

communicationserviceprovider

service users

macro protocol

Figure 6. A micro protocol architecture

complex functionalities. Entities belonging to the same micro protocol are marked by
identical graphical shapes. Depending on the applied composition, different kinds of
architectures including layered architectures and functional architectures [ZIT 93] can
be obtained.

3. Model-driven Implementation with SDL

Starting point for model-driven implementation is the platform-specific model of
the design phase, specified with SDL (see Figure 7). From SDL specifications, it is
possible to generate code in two steps. In the first step, intermediate code in languages
such as C or C++ can be compiled. This code can be executed in different runtime
environments and is therefore referred to as Runtime-Independent Code (RIC) in Fig-
ure 7. The commercial TAU tool set [TAU] provides two SDL-to-C code generators
for this purpose. Cadvanced is a full-scale compiler, supporting most constructs of
SDL including dynamic creation of SDL processes and stateful procedures. Cmicro
implements a reduced subset of SDL and is targeted towards embedded systems. In
addition, we have developed our own SDL-to-C code generator ConTraST [FLI 06b],
which can be configured to support different SDL profiles [GRA 06]. Based on the
intermediate representation of SDL specifications, ConTraST also generates the doc-
umentation of micro protocols.

To be executed on a specific target system, the RIC is compiled to machine code
(Runtime-Specific Code (RSC), see Figure 7), using a platform-specific C-compiler.
To execute the RSC, an SDL engine for the target system is required in addition. The
SDL engine comprises all functionality that is necessary to initialize and execute the
SDL system, e.g., to build up the system structure, to select, schedule, and execute
fireable transitions, and to transfer signals between SDL processes. SDL engines for
Windows and Unix platforms are available from the TAU tool set, and from ConTraST.



Model-driven by SDL 9

PSM
(SDL)

RIC
(C-Code)

SEnF
(C-Code)

SDL Engine
(C-Code)

RSC
(machine code)

system in
execution

Figure 7. Model-driven implementation

RSC

(Cyclist1)

Linux

RSC

(Trainer 1)

Windows

RSC

(Cyclistn)

Linux

. . .

WLAN 802.11b

Figure 8. RSC: System configuration

To implement open SDL systems, i.e., systems interacting with their environment,
one ore more interfaces satisfying the semantics of the SDL signaling mechanism are
needed. In general, the environment interface depends on a variety of aspects, such as
the type of interaction supported by the environment (e.g., message passing, method
invocation), the interaction formats, the operating system, and the communication ser-
vice (e.g., connection-oriented, connection-less, addressing). According to the PSM,
SDL systems may communicate via WLAN, UART, Bluetooth, or Zigbee, to name
a few communication technologies, or with input and output devices such as LEDs,
joysticks, net cams, sensors, and actuators, respectively. When using the TAU tool
set, extensive hand-coding steps are required to supply these interfaces (called envi-
ronment functions in the context of TAU). To avoid hand-coding entirely, we have
developed a generic, specification independent library of interfacing routines, called
SDL Environment Framework (SEnF). Based on configuration information supplied
by TAU, interfacing routines for different combinations of operating systems, com-
munication technologies, and I/O devices are automatically determined and added to
the generated code.

Figure 8 shows an ABT system configuration with n cyclists and one trainer, com-
municating via WLAN 802.11b and using Linux and Windows, respectively. In addi-
tion, there is communication with the pulse sensor via UART, and with a PDA. Please



10 2e soumission à Notère 2007.

Figure 9. Equipped bicycle

note that the same RIC is used to compile the RSC for different target systems. Also,
different operating systems are combined into one distributed system.

The prototype cyclist system is depicted in Figure 9. On the carrier, the embedded
PC (with WLAN stick, Bluetooth adapter, and UART interface), pulse rate receiver,
and batteries are mounted. A PDA showing the current driver status (e.g., pulse rate,
actual speed) and the trainer orders (e.g., required speed, required position changes)
is attached to the handlebar. Communication between embedded PC and PDA is via
Bluetooth. Finally, the cyclist carries a pulse rate transmitter. The trainer system (not
shown here) is installed on a laptop, with a sophisticated graphical user interface to
monitor and direct the training situation.

A weight-optimized version of the cyclist system has been implemented on a MI-
CAz platform, a low power wireless sensor mote produced by Crossbow Industries
[CRO ]. This mote consists of an embedded micro controller with 128 KB of Flash
ROM and 4 KB of RAM. The PSM for the MICAz platform is very similar to the
PSM of the embedded PC solution. While the PIM is identical for both platforms, the
WLAN driver interface has been replaced by a CC2420 ZigBee interface. In addition,
a specialized MAC layer has been added. Due to resource constraints, different SDL-
to-C compilers and different SEnF interfacing routines have been used to generate the
production code for the two platforms.



Model-driven by SDL 11

PSM
(SDL)

RIC
(C-Code)

SEnF
(C-Code)

SDL Engine
(C-Code)

RSC
(machine code)

system under
Simulation

ns+SDL
(C-Code)

(machine code)
ns+SDL

Figure 10. Model-driven performance simulation

4. Model-driven Performance Simulation with SDL

In several case studies [FLI 06a, KUH 06b, WEB 06], we have demonstrated that
the platform-specific model can also be used as starting point for model-driven per-
formance simulations. In Figure 10, the corresponding phases of the process model
are shown. Similar to model-driven implementation, the RIC and RSC are generated
and combined with SDL Engine and SDL Environment Framework. In addition, the
network simulator ns+SDL [KUH 05] is linked to the machine code, controlling the
execution of the system under simulation.

ns+SDL is an extension of the network simulator ns-2, an event-based simulator,
developed at the Information Sciences Institute of the University of Southern Califor-
nia [ns2]. We have extended ns-2 to incorporate components that are generated from
SDL specifications, using the aforementioned code generator TAU Cadvanced [TAU].
This enables the developer to use code that is generated from the PSM for performance
simulations of networked systems. Our extension of ns-2 consists of several ns-2 sim-
ulation components replacing predefined simulation functionalities, an adapted SDL
Engine for the interaction between ns-2 and an SDL system, and an environment pack-
age for SDL systems that forms part of the SDL Environment Framework (SEnF). An
important advantage of our solution is that the same SDL-to-C code generator is used
to compile the runtime-independent code (RIC) from the same PSM. This increases
confidence that the results of the performance simulation hold for the system in exe-
cution.

Figure 11 shows an ABT simulation configuration with 20 cyclists and one trainer,
communicating via a simulated WLAN 802.11b wireless LAN with a range of more
than 100m. The cyclists are riding one behind the other, followed by the trainer.
According to the mobility model, positions and distances of cyclists change during
the ride. While this has no consequences on connectivity between nodes in most
cases, due to the wide range of WLAN, there are two situations where the field and



12 2e soumission à Notère 2007.

RSC

(Cyclist1)

Linux

RSC

(Trainer 1)

Linux

RSC

(Cyclist20)

Linux

. . .

ns-2 (including WLAN 802.11b)

Figure 11. RSC: Simulation configuration

Figure 12. Comparison of local broadcast and NXP/MPR

the network are partitioned. At simulation times t1 = 100sec and t2 = 530sec, there
is a gap of about 100m between two groups of nodes.

In the simulated scenario, we have examined two system aspects. First, we have
compared connectivity for local and global broadcast (see Figure 12). When using lo-
cal broadcast, connectivity decreases to about 50% when the field is stretched. Global
broadcast using selective flooding with NXP/MPR improves the situation substan-
tially. Reduced connectivity only occurs for short periods of time, and is due to frame
collisions that prevent neighbors to receive the updated network status.

The second aspect concerns the benefits of the algorithm to adapt the status mes-
sage rate to the current number of cyclists in the group for best use of available band-
width. Simulation results are shown in Figure 13. In the non-adaptive case, the maxi-
mum number of cyclists in the group, i.e., 30, is used to determine the (constant) status
message rate as observed by the trainer, which is 7 per second. Since the actual group



Model-driven by SDL 13

Figure 13. Benefits of status message rate adaptation

size is only 20, this leads to an actual status message rate of 5 per second when all
members of the group are within range of the trainer. This rate drops to 2 per second
during periods of network partitioning.

In the adaptive case, the actual number of cyclists is determined and updated dy-
namically. In the simulation, the actual number of cyclists in the group allows for 7
status messages per second at the beginning. When the group is split, there is a short
drop down to 5 status messages per second before the updated number of cyclists
leads to a shorter status message interval of the cyclists within range of the trainer,
and therefore to the maximum rate of 7 per second. Interestingly, there is another
drop when the field of cyclists fuses. This can be explained by the fact that the pre-
vious field members reduce their message rate immediately (due to the larger group
size), while the new field members start their status message transmission only after
their status interval has expired for the first time.

Since the performance simulation is model-based, it is straightforward to replace
the WLAN simulation component by other technologies, say, ZigBee or Bluetooth,
and to study the above system aspects. Also, it is straightforward to replace the routing
protocol, or other communication components, or to modify the adaptation algorithm.
For this, it is important that the platform-independent model is sufficiently detailed.
We have shown that this is feasible even in the context of ambient intelligence systems,
which are constrained by resources and environmental conditions.



14 2e soumission à Notère 2007.

5. Conclusions and Outlook

In this paper, we have outlined our holistic, model-driven approach to the develop-
ment of networked systems, with SDL as modeling language, combining some of our
research of the last decade. We have shown that these individual results are comple-
mentary and, taken together, support the entire process of model-driven development
of distributed systems and communication protocols. This applies to design reuse
approaches in the early development phases, and also to automatic code generation
techniques in the late phases.

Certainly one of the most important results is that placing the model in the center
of the development activity works well for distributed systems and communication
protocols, and that formalized design methods are most useful. A complete tool chain
is available to support design creation, design reuse, design simulation, design anal-
ysis, design documentation, performance simulation, production and simulation code
generation, and environment interfacing. Some of these tools are available from a
commercial tool provider; other tools have been developed in the course of our re-
search. It is noteworthy to state that this tool chain has been applied successfully in a
number of holistic system developments.

The holistic, model-driven approach outlined in this paper paves the way for
future work on the engineering of distributed systems and communication protocols.
We are currently studying adaptive routing algorithms for ad-hoc networks, i.e.
algorithms that will adapt to node density, node movement, and traffic profiles.
This requires sufficiently strong cross-layer integration of protocols and distributed
applications. With SDL being well-suited for designing these system layers, and
with our tool chain for model-driven performance simulations, we are capable of
studying the effects of individual adaptation measures very early in the development
process. Another research area is quality of service provision in ad-hoc networks,
where adaptive protocols are crucial to cope with scarce resources, varying channel
quality and traffic profiles, and node mobility. Finally, we are applying the concepts
and tools presented in this paper to the development of an adaptive, hybrid MAC
layer for wireless ad-hoc networks.

Acknowledgements. Over the past ten years, several researchers have contributed
to the holistic approach outlined in this paper. This includes (in alphabetical order)
Jörg Dorsch, Ingmar Fliege, Birgit Geppert, Alexander Geraldy, Rüdiger Grammes,
Ferhat Khendek, Thomas Kuhn, Frank Rößler, Philipp Schaible, and Christian Weber.
I thank all of them for their valuable contributions. The financial support of several
funding organizations, in particular of the Deutsche Forschungsgemeinschaft (DFG),
is gratefully acknowledged.



Model-driven by SDL 15

6. References

[BOO 05] BOOK M., BEYEDA S., GRUHN V., Model-driven Software Development, Springer,
2005.

[BRÆ 03] BRÆK R., MØLLER-PEDERSEN B., “Micro Protocol Design - The SNMP Case
Study”, SHERRATT E., Ed., Telecommunications and Beyond - The Broader Applicability
of SDL and MSC, vol. 2599 of LNCS, Springer, 2003, p. 61-73.

[CRO ] CROSSBOW, “MICAz Wireless Measurement System”, www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf.

[DOR 04] DORSCH J., EK A., GOTZHEIN R., “SPT - The SDL Pattern Tool”, AMYOT D.,
WILLIAMS A. W., Eds., System Modeling and Analysis, vol. 3319 of LNCS, Springer,
2004, p. 50-64.

[FLI 04] FLIEGE I., GERALDY A., GOTZHEIN R., SCHAIBLE P., “A Flexible Micro Proto-
col Framework”, AMYOT D., WILLIAMS A. W., Eds., System Modeling and Analysis,
vol. 3319 of LNCS, Springer, 2004, p. 224-236.

[FLI 05] FLIEGE I., GERALDY A., GOTZHEIN R., KUHN T., WEBEL C., “Developing Safety-
Critical Real-Time Systems with SDL Design Patterns and Components”, Computer Net-
works, vol. 49, num. 5, 2005, p. 689-706, Elsevier.

[FLI 06a] FLIEGE I., GERALDY A., GOTZHEIN R., JAITNER T., KUHN T., WEBEL C.,
“An Ambient Intelligence System to Assist Team Training and Competition in Cycling”,
MORITZ E. F., HAAKE S., Eds., The Engineering of Sport 6, Vol. 1: Development for
Sports, Springer Science and Business Media, 2006, p. 103-108.

[FLI 06b] FLIEGE I., GRAMMES R., WEBER C., “ConTraST - A Configurable SDL Tran-
spiler and Runtime Environment”, GOTZHEIN R., REED R., Eds., System Analysis and
Modeling: Language Profiles, vol. 4320 of LNCS, Springer, 2006, p. 216-228.

[FLI 07] FLIEGE I., GERALDY A., GOTZHEIN R., “Micro Protocol Based Design of Routing
Protocols for Ad-hoc Networks”, 7th International Conference on New Technologies of
Distributed Systems (NOTERE 2007), Marrakesh, Morocco, June 4-8, 2007.

[GEP 97] GEPPERT B., GOTZHEIN R., RÖSSLER F., “Configuring Communication Protocols
Using SDL Patterns”, CAVALLI A., SARMA A., Eds., SDL’97: Time for Testing, Proceed-
ings of the 8th SDL Forum, Elsevier, 1997, p. 523-538.

[GEP 98] GEPPERT B., KÜHLMEYER A. K., RÖSSLER F., SCHNEIDER M., “SDL Pattern
Based Development of a Communication Subsystem for CAN”, BUDKOWSKI S., CAVALLI

A., NAJM E., Eds., Formal Description Techniques and Protocol Specification, Testing, and
Verification, Proc. of FORTE/PSTV’98, Kluwer Academic Publishers, 1998, p. 197-212.

[GOT 02] GOTZHEIN R., KHENDEK F., “Conception avec Micro-Protocoles”, Colloque
Francophone sur l’Ingenierie des Protocoles (CFIP’2002), Montreal, Canada, May 27-30,
2002.

[GOT 03a] GOTZHEIN R., “Consolidating and Applying the SDL-Pattern Approach: A De-
tailed Case Study”, Information and Software Technology, vol. 45, 2003, p. 727-741,
Elsevier.

[GOT 03b] GOTZHEIN R., KHENDEK F., SCHAIBLE P., “Micro Protocol Design - The SNMP
Case Study”, SHERRATT E., Ed., Telecommunications and Beyond - The Broader Appli-
cability of SDL and MSC, vol. 2599 of LNCS, Springer, 2003, p. 61-73.



16 2e soumission à Notère 2007.

[GRA 03] GRAMMES R., GOTZHEIN R., MAHR C., SCHAIBLE P., SCHLEIFFER H., “Indus-
trial Application of the SDL Pattern Approach in UMTS Call Processing Development -
Experience and Quantitative Assessment”, REED R., REED J., Eds., SDL 2003: System
Design, vol. 2708 of LNCS, Springer, 2003, p. 101-115.

[GRA 06] GRAMMES R., “Formal Operations for SDL Language Profiles”, GOTZHEIN R.,
REED R., Eds., System Analysis and Modeling: Language Profiles, vol. 4320 of LNCS,
Springer, 2006, p. 49-63.

[ITU 01] ITU-T, Message Sequence Charts (MSC), ITU-T Recommendation Z.120, Interna-
tional Telecommunications Union, 2001.

[ITU 02] ITU-T, Specification and Description Language(SDL), ITU-T Recommendation
Z.100, International Telecommunications Union, August 2002.

[KUH 05] KUHN T., GERALDY A., GOTZHEIN R., ROTHLÄNDER F., “ns+SDL - The Net-
work Simulator for SDL System”, PRINZ A., REED R., REED J., Eds., SDL 2005: Model
Driven, vol. 3530 of LNCS, Springer, 2005, p. 103-116.

[KUH 06a] KUHN T., “MacZ - A QoS MAC Layer for Ambient Intelligence Systems”,
PFEIFER T., Ed., Advances in Pervasive Computing 2006, Adjunct Proceedings of the 4th
International Conference on Pervasive Computing, Dublin, Ireland, May 7-10, 2006.

[KUH 06b] KUHN T., GOTZHEIN R., WEBEL C., “Model-driven Development with SDL -
Process, Tools, and Experiences”, ACM/IEEE 9th International Conference on Model
Driven Engineering Languages and Systems (MoDELS / UML 2006), Genua, Italy, Oct
1-6, 2006.

[MIL 03] MILLER J., MUKERJI J., MDA Guide Version 1.0.1, Object Management Group
(OMG), 2003.

[ns2] Information Sciences Institute, University of Southern California, “The Network Simu-
lator ns-2”, www.isi.edu/nsnam/ns.

[Röß 98] RÖSSLER F., GEPPERT B., SCHAIBLE P., “Re-Engineering of the Internet Stream
Protocol ST2+ with Formalized Design Patterns”, Proceedings of the Fifth International
Conference on Software Reuse (ICSR5), Victoria, Canada, 1998.

[SCH 03] SCHAIBLE P., GOTZHEIN R., “Development of Distributed Systems with SDL by
Means of Formalized APIs”, REED R., REED J., Eds., SDL 2003: System Design,
vol. 2708 of LNCS, Springer, 2003, p. 317-334.

[SHE 03] SHERRATT E., Telecommunications and beyond: The Broader Applicability of SDL
and MSC, vol. 2599 of LNCS, Springer, 2003.

[TAU] Telelogic AB, “Telelogic Tau Generation 1”, www.telelogic.com/products/tau/
index.cfm.

[UML04] Object Management Group (OMG), “Unified Modeling Language 2.0 Infrastructure
- Final Adoped Specification”, 2004, www.omg.org/cgi-bin/doc?ptc/2003-09-15.

[WEB 06] WEBEL C., FLIEGE I., GERALDY A., GOTZHEIN R., KRÄMER M., KUHN

T., “Cross-Layer Integration in Ad-Hoc Networks with Enhanced Best-Effort Quality-of-
Service Guarantees”, Proc. of the World Telecommunications Congress, Budapest, Hun-
gary, 2006.

[ZIT 93] ZITTERBART M., STILLER B., TANTAWY A., “A Model for Flexible High-
Performance Communication Subsystems”, IEEE Journal on Selected Areas in Commu-
nications, vol. 11, num. 4, 1993, p. 507-518.


