
Technical Report

SDL Profiles - Definition and Formal
Extraction

R. Grammes R. Gotzhein

September 19, 2006

University of Kaiserslautern

Contents

1 Introduction 4

2 Language Definition of SDL 5
2.1 Specification and Description Language (SDL) 5
2.2 Abstract State Machines . 5
2.3 Formal Definition of SDL-2000 . 6

3 Definition and Extraction of SDL Profiles 8
3.1 SDL Profiles . 8
3.2 Outline of the Extraction Approach for SDL Profiles 9

4 Formalisation 11
4.1 Reduction Profile . 11
4.2 Formalisation Signature . 12
4.3 Formal Reduction of ASMs . 13

4.3.1 Formal Reduction of ASM Definitions 13
4.3.2 Macros, Functions and Parameters 14
4.3.3 Formal Reduction of ASM Rules 16
4.3.4 Formal Reduction of ASM Domains 18
4.3.5 Formal Reduction of ASM Expressions 20

5 Consistency of SDL Profiles 29

6 SDL-Profile Tool 31
6.1 Tool Chain . 31
6.2 Application of the SDL-Profile Tool . 33

7 Related Work 34

8 Conclusions and Outlook 35

2

Over a period of 30 years, ITU-T’s Specification and Description Language (SDL)
has matured to a sophisticated formal modelling language for distributed systems and
communication protocols. The language definition of SDL-2000, the latest version
of SDL, is complex and difficult to maintain. Full tool support for SDL is costly to
implement. Therefore, only subsets of SDL are currently supported by tools. These
SDL subsets - called SDL profiles - already cover a wide range of systems, and are often
sufficient in practice. In this report, we present our approach for extracting the formal
semantics for SDL profiles from the complete SDL semantics. We then formalise the
approach, present our SDL-profile tool, and report on our experiences.

1 Introduction

Over a period of 30 years, ITU-T’s Specification and Description Language (SDL)
[6, 7, 8] has matured from a simple, informal graphical notation for describing a set
of communicating finite state machines to a sophisticated formal modelling technique
with graphical syntax, data types, structuring mechanisms, object-oriented features,
formal semantics, support for reuse, companion notations, and commercial tool envi-
ronments. This development has led to an expressive and sophisticated language for a
wide range of domains. On the other hand, the language definition of SDL-2000, the
latest version of SDL, is complex and difficult to maintain. Full tool support for SDL
is costly to implement. Therefore, all commercial tool providers have decided to sup-
port subsets of SDL only. These SDL subsets - also called SDL profiles in this report
- are targeted towards specific domains and companies, where, due to their reduced
complexity, they are preferred by engineers.

While the use of SDL profiles is today’s state-of-the-practice, their definition is not
reflected in the SDL standard. One could argue that this is of no particular importance,
since the full language definition covers all possible subsets. However, a drawback is
that engineers working with a well-defined SDL profile only are still confronted with
the entire language definition. Also, the task of tool builders to show conformance to
the language definition is highly complex, in particular if the optimisation potential of
a particular SDL profile is to be exploited.

To solve these problems, one could think of defining a separate standard for each
SDL profile of interest. This, however, creates other problems arising from the extra
work to define and maintain these standards, and of keeping them consistent. In this
report, we address these problems and present a formalised, tool-based approach for
extracting, for a given SDL profile, the formal semantics from the standardised SDL
semantics. In Section 2, we survey the language definition of SDL, in particular, the
formal semantics. Section 3 outlines our approach to the extraction of the formal
semantics for SDL profiles. In Section 4, the complete formalisation of the approach
is presented. Consistency of SDL profiles is visited in Section 5. We present our tool
chain for the extraction approach in Section 6, survey related work in Section 7, and
draw conclusions in Section 8.

4

2 Language Definition of SDL

2.1 Specification and Description Language (SDL)

The Specification and Description Language (SDL) [6] is a formal language standard-
ised by the International Telecommunications Union (ITU). It is widely used both in
industry and academia. SDL is based on the concept of asynchronously communicat-
ing finite state machines, running concurrently or in parallel. SDL provides language
constructs for the specification of nested system structure, communication using chan-
nels, signals and signal queues, behaviour using extended finite state machines, and
data.

In 1988, the semantics of SDL was formally defined, upgrading the language to a
formal description technique. In 1999, a new version of the language, referred to as
SDL-2000, was introduced. Since the formal definition of the semantics was assessed as
being too difficult to extend and maintain, a new formal semantics, based on Abstract
State Machines, was defined from scratch [2, 9, 10].

2.2 Abstract State Machines

Abstract State Machines (ASMs) [4, 5] are a general model of computation introduced
by Yuri Gurevich. They combine declarative concepts of first-order logic with the
abstract operational view of distributed transition systems. ASMs are based on many-
sorted first-order structures, called states. A state consists of a signature containing
domain names, function names and relation names, together with an interpretation
of these names. A state can be viewed as a memory snapshot of the ASM, where
locations - identified by functions and parameter values - are mapped to result values.

ASM-Listing 1 shows the signature for the specification of a graph, consisting of
domain names Node and Edge (defined as a pair of nodes), a 0-ary function name
start and an unary function names weight and visited. A state of the ASM defines
an interpretation of the names in the signature. Node and Edge are interpreted as
sets of elements, start is interpretated as an element of the set Node (or the special
element undefined), weight and visited are interpretated as functions from elements
of set Edge to the set of natural numbers and the set of boolean values, respectively.

1 domain Node
2 domain Edge =defNode ×Node
3

4 start : → Node
5 weight: Edge → N

5

6 visited : Edge → Boolean

ASM-Listing 1: Vocabulary of a Graph Specification

The computation model of distributed ASMs is based on a set of autonomously
operating ASM agents. Starting from an initial state, the agents perform concurrent
computations and interact through shared locations of the state. The behaviour of
ASM agents is determined by ASM programs, consisting of ASM rules. Complex
ASM rules are defined as compositions of guarded update instructions using a small
set of rule constructors. From these rules, update sets, i.e. sets of memory locations
and new values, are computed. These update sets define state transitions that result
from applying all updates simultaneously.

A detailed introduction to Abstract State Machines and the syntax used in this
report is given in [2].

2.3 Formal Definition of SDL-2000

In November 2000, the formal semantics of SDL-2000 was officially approved to become
part of the SDL language definition. It covers all static and dynamic language aspects,
and consists of two major parts (for a detailed survey, see [2]):

• The static semantics of SDL defines well-formedness conditions on the concrete
syntax of SDL. Transformations map extended features of SDL to core features
of the language, reducing the complexity of the dynamic semantics.

• The dynamic semantics of SDL defines the dynamic behaviour of well-formed
SDL specifications, based on ASMs. At the core of the dynamic semantics is the
SDL Virtual Machine (SVM), providing a signal flow model and several types of
agents. Agents go through an initialisation phase, creating the nested structure
of an SDL system, and an execution phase, forwarding signals and executing state
machines. Behaviour primitives form the instruction set of the SVM, defining
basic actions such as sending signals, setting timers or calling procedures. A
compilation function maps actions from transitions in an SDL specification to
instructions of the SVM.

ASM Listing 2 shows an excerpt from the SVM, which provides a formal definition
for the setting of timers, encapsulated in the ASM rule macro SetTimer. When
evaluated, the macro defines an update of the input queue of an SDL agent, where a
possibly existing timer instance is removed, and a new timer instance is appended.

1 SetTimer(tm: Timer, vSeq: Value∗, t: [Time]) ≡
2 let tmi = mk−TimerInst(Self.self, tm, vSeq) in
3 if t = undefined then
4 Self . inport .schedule := insert(tmi, now + tm.duration, delete(tmi, Self . inport .schedule)

)
5 tmi.arrival := now + tm.duration
6 else
7 Self . inport .schedule := insert(tmi, t , delete (tmi, Self . inport .schedule))

6

8 tmi.arrival := t
9 endif

10 endlet

ASM-Listing 2: Setting SDL Timers

The let-rule in line 2 defines a shortcut tmi for a new TimerInst tuple, consisting
of the process identifier of the executing agent Self.self, the type of the timer tm, and
a sequence of parameters vSeq. In case no time t is passed as a parameter to the rule
macro, tmi is inserted into the schedule of the process (line 4) at the current time now
plus the default duration of the timer type. In the same step, all timer tuples that are
structurally equivalent to tmi (same type, parameters and agent) are deleted from the
schedule. In case a time t is passed, the timer instance is inserted into the schedule at
t (line 7).

7

3 Definition and Extraction of SDL
Profiles

3.1 SDL Profiles

SDL has become a sophisticated and complex language with many language features.
This results in a large and extensive language definition. In the formal semantics of
SDL-2000, the operational nature of ASMs and the extensive use of modularisation
lead to a readable formal semantics definition. However, due to the complexity of the
language, the formal semantics is large and requires substantial effort to be understood
completely: the dynamic semantics of SDL-2000 consist of more than 3000 lines of ASM
specification.

The problem of the complexity of SDL-2000 has been identified, and the definition
of simpler sublanguages of SDL has been proposed. One such language is defined by
the SDL Task Force as the simplest useful enhanced subset of SDL (referred to as
’SDL+’) [17]. This language is implemented by the Safire tool, and here is called
Safire. Safire focuses on the state machine aspect of SDL, and enhances it with
functionality needed for testing. However, although a formal semantics exists for SDL,
none is provided for Safire.

Core

Static 1

Static 2

Dynamic
~SDL96

SDL­2000

SAFIRE

Cmicro

Cadvanced

Figure 3.1: Superset Relationship between Language Profiles

8

SDL profiles are self-contained subsets of SDL, possibly enhanced by further lan-
guage constructs, targeted towards specific domains and companies. In comparison to
the full SDL language definition, SDL profiles have reduced complexity, which supports
both engineers and tool builders. A sublanguage like Safire is an SDL profile. Tools
for an SDL profile can be developed faster, leading to less expensive tools and enabling
code optimisations. Possible SDL profiles could also be derived from the supported
features of the code generators Cbasic and Cadvanced in Telelogic Tau.

Apart from being subsets of the complete language, SDL profiles can be subsets of
other SDL profiles, forming a hierarchy profiles. We have defined four SDL profiles.
The smallest profile is Core, which contains a minimal set of features. Static1 , Static2
and Dynamic extend Core, each profile adding additional features to the preceding
one, Dynamic being roughly the equivalent of SDL-96. The subset relationships be-
tween different language profiles are shown in Figure 3.1. The SDL profiles Core,
Static1 , Static2 and Dynamic are supported syntactically by our configurable tran-
spiler ConTraST [1].

3.2 Outline of the Extraction Approach for SDL Profiles

Being language definitions themselves, SDL profiles consist of a formal syntax and a
formal semantics. To reduce the overhead of defining SDL profiles and to keep them
consistent, a systematic, formalised approach is needed. Basically, there are two ways
to define SDL profiles:

• Composition (bottom-up). Here, SDL profiles are defined by composing an
SDL language core and selected SDL language modules. The language core can
be understood as the smallest useful SDL subset, for instance, SDL reduced to a
set of elementary communicating finite state machines, without any extensions.
A language module encapsulates a language feature, defining its syntax, seman-
tics, and dependencies to other language modules. Examples of SDL language
modules are timers, exceptions, save, and inheritance. Note that language core as
well as language modules consist of syntax and semantics. For the composition
to be feasible, it is crucial that the semantics of modules can be encapsulated
and composed with the semantics of the language core and other modules.

• Extraction (top-down). Here, SDL profiles are defined by extracting the pro-
file definition from the complete SDL language definition. As in the composition
approach, SDL language modules, each consisting of a set of SDL language con-
structs, can be identified. To obtain a particular SDL profile, these language
modules are then removed from the complete language definition. Different from
the composition approach, it is not necessary that the semantics of modules can
be encapsulated. Instead, it suffices to characterise modules by their language
constructs. With this information, it is straightforward to identify corresponding
grammar rules, and to reduce or remove them. A major problem to be solved is
the reduction of the formal semantics.

9

From a methodological point of view, the composition approach seems more ap-
pealing. However, there is the difficulty of encapsulating the formal semantics of SDL
language modules such that composition is supported, which we have not been able
to overcome. Therefore, we have investigated the extraction approach, with quick
first results. Meanwhile, we have further developed, consolidated, and formalised the
extraction approach, and have built a sophisticated tool chain.

To extract the formal semantics of an SDL profile from the complete SDL semantics,
we have considered two approaches:

• ASM rule coverage. With each SDL profile, an ASM rule coverage comprising
all ASM rules of the SVM that may be evaluated in some execution of some SDL
specification written in that SDL profile can be associated. While this approach
is semantically sound, it is practically infeasible. For a given SDL specification,
the concurrent, non-deterministic nature of the SVM may lead to a very large
number of possible executions. Furthermore, the number of SDL specifications
that can be written in a given SDL profile is extremely large. Therefore, the
worst-case complexity of an algorithm for ASM rule coverage is far too high to
be of any use for practical purposes.

• dead ASM rule recognition. Instead of computing the ASM rule coverage of a
set of SDL specifications, we can develop safe criteria to recognise ASM rules that
are never evaluated for a given SDL profile. For instance, if the SDL language
module timer is to be removed, we can safely remove all ASM rules that are used
for setting and resetting SDL timers, including the corresponding ASM domains,
functions, and relations. It is important here that ASM dead rule recognition
works in a conservative way, i.e. ASM rules must only be removed if it can be
formally proven that they are not evaluated for a given SDL profile. The degree
of reduction that can be achieved this way thus depends on the completeness
of the criteria that can be defined. Unlike the ASM rule coverage approach,
dead code recognition is practically feasible. Therefore, we have followed this
approach, and will present safe criteria as well as some heuristics below.

10

4 Formalisation

4.1 Reduction Profile

SDL profiles characterise subsets of the set of valid SDL specifications, by defining
subsets of the concrete and abstract syntax of SDL. The abstract syntax of SDL
influences the dynamic semantics, which is the focus of our work, in two ways:

• The abstract syntax yields part of the SVM data structure (ASM signature, see
Figure 4.1). For each element of the abstract grammar, a domain of the same
name is introduced in the ASM signature. E.g., the following non-terminals of the
abstract grammar, which are only relevant for SDL specifications with timers,
are also domains in the signature of the ASM: Timer-name, Timer-identifier,
Timer-definition, Timer-active-expression, Set-node, and Reset-node.

• In the case of SDL actions (e.g., assignments, setting timers), a compilation
function maps parts of the abstract syntax to domains of the formal semantics
definition that form the SVM. E.g., the compilation of a Set-node in the abstract
syntax tree leads to the creation of an element of the domain Set in the ASM
signature.

Following the extraction approach, we remove SDL language modules from the for-
mal language definition. Language modules consist of sets of SDL language constructs,
and their corresponding grammar rules. These grammar rules are removed from the
formal syntax definition. Furthermore, they form the starting point for the reduction
of the formal semantics definition (see Figure 4.1). Starting from the removed parts
of the formal syntax definition, we can identify corresponding domains in the ASM
signature, as described above. These domains are empty in the initial state of the
SVM, and, since they are not modified by the SVM, will be empty in all reachable
states, too. This observation is fundamental for recognising dead ASM rules of the
SVM.

Apart from domains corresponding to elements of the abstract grammar of a lan-
guage module, other domains, functions and predicates in the SVM signature corre-
spond to specific language modules. E.g., SignalSaved is a predicate that corresponds
to the save feature in SDL. If it holds, the signal being examined is not discarded,
if no valid transition is found. These elements of the SVM signature are removed in
addition to domains corresponding to elements of the abstract grammar. However, we
need to prove that these elements are not needed for the given SDL profile. E.g., we
can show that SignalSaved is always false if save-signalset is empty.

In order to perform ASM dead code recognition, we specify all parts of the ASM
signature that correspond to language modules not included in the SDL profile in a

11

SDL
Abstract Syntax

SVM data structure
(ASM Signature)

SVM Behaviour
(ASM Rules)

compilation
function

reduction

Syntax of
SDL profile

Syntax of SDL
language modules
to be removed

corresponding
ASM domains

corresponding
compilation units

additional corresponding
parts of the signature

Figure 4.1: Concept of the Extraction Process

reduction profile. The reduction profile is a list of domains, functions and predicates
from the SVM signature to be removed in the extraction process. Additionally, we
specify a default value (true or false) for predicates. These elements are removed
from the formal language definition according to the rules formally defined in the
following sections.

4.2 Formalisation Signature

We now formalise our approach for extracting the formal semantics of SDL profiles
from the complete SDL semantics. The formalisation gives a precise definition of the
removal process, which leads to deterministic results, and provides the foundation for
tool support for the removal process. Finally, a formal definition is necessary in order
to make precise statements about the consistency of SDL profiles. Since the formal
syntax definition can be easily defined in a modular fashion, making its reduction
straightforward, we focus on the reduction of the formal semantics definition.

For the formal definition of the extraction process, we have decided to use a func-
tional approach, defining functions that recursively map the original formal semantics
to the reduced formal semantics. These functions are based on a concrete grammar
for Abstract State Machines [3].

To formalise the extraction, we define a function remove, which maps a term from the
grammar G of ASMs and a set of variables V - an initially empty set of locally undefined
variables from the ASM formal semantics - to a reduced term from the grammar
G. Additionally, we introduce three mutually exclusive binary predicates, namely
undefined , true and false, that control the reduction. The profile definition is given as a
globally defined set of elements r from the signature of the formal semantics definition,
annotated by default values true and false for predicates. This set represents the
elements to be removed from the formal semantics definition, and is therefore called

12

the reduction profile. For all elements in the reduction profile, undefined (true or false
for predicates) holds.

remover : G× V → G

undefinedr : G× V → Boolean

truer : G× V → Boolean

falser : G× V → Boolean

The remove function is defined on all elements of the grammar G. Predicates true
and false are explicitly defined on boolean and first-order logic expressions. On all
other elements of G, the predicates do not hold. true(e, v) (false(e, v)) holds iff ex-
pression e always evaluates to true (false) in any state of the ASM with reduced
signature. Predicate undefined is defined on all expressions and domains. It holds on
any expression or domain that cannot be reduced to a defined expression/domain. A
defined expression or domain contains only elements that are not in the removed part
of the ASM signature. E.g., if undefined holds for expression e1 and expression e2,
undefined also holds for expression e1 ∨ e2.

The function remove is defined recursively - a given term is mapped to a new term
by applying the mapping defined by remove to the subterms. In case none of the
predicates undefined , true and false holds, the current term is not reduced any further.
This assures in particular that remove corresponds to the identical mapping if the
signature of the ASM is not reduced. In other cases, subterms can be replaced or
omitted depending on which of the predicates hold.

4.3 Formal Reduction of ASMs

4.3.1 Formal Reduction of ASM Definitions

This section describes the remove function for ASM definitions, namely domain, func-
tion and rule macro definitions. The remove function does not remove a definition
completely. If, by the reduction process, the definition becomes trivial or is not ref-
erenced anymore, it can be removed in a subsequent cleanup step. The following
variables are used to define the removal:

D,D1, D2 ∈ domain, dn ∈ DomainName, exp ∈ formula, R,R1, R2 ∈ rule, ps ∈
paramSeq

Domain definitions are not affected by removal, unless they are derived definitions.
For derived domain definitions, removal continues with the domain expression that
defines the derived domain.

remove(mode domain dn,V) = mode domain dn
remove(domain dn,V) = domain dn
remove(dn =def D,V) = dn =def remove(D,V)

13

For function definitions, removal continues with the function signature to remove
any undefined domains. For derived functions, removal also continues with the formula
that defines the function, taking into account all formal parameters that were removed.

remove(mode f ’:’ D1 → D2,V) = mode f ’:’ remove(D1,V) → remove(D2,V)
remove(mode f ’:’ → D2,V) = mode f ’:’ → remove(D2,V)
remove(f ’:’ D1 → D2,V) = f ’:’ remove(D1,V) → remove(D2,V)
remove(f ’:’ → D2,V) = f ’:’ → remove(D2,V)

remove(f ’:’ D =def exp,V) = f ’:’ remove(D,V) =def remove(exp,V)
remove(f(ps) ’:’ D =def exp,V) =

f(remove(ps,V)) ’:’ remove(D,V) =def remove(exp,V ∪ remfpar(ps))

A macro definition consists of a rule name, a sequence of formal parameters and a
rule body. Domains of formal parameters may be undefined, and the corresponding
parameters must be removed. Removal continues with the rule body and the undefined
formal parameters added to the list of undefined variables.

remove(RuleName ≡ R,V) = RuleName ≡ remove(R,V)
remove(RuleName(ps) ≡ R,V) =

RuleName(remove(ps,V)) ≡ remove(R,V ∪ remfpar(ps))

Removal on constraints equates to removal on the constraint formula. Removal of
program definitions continues with removal of the rule body of the program.

remove(constraint exp,V) = constraint remove(exp,V)
remove(initially exp,V) = initially remove(exp,V)

remove(ProgramName ’:’ R,V) = ProgramName ’:’ remove(R,V)
remove(ProgramName ’:’,V) = ProgramName ’:’

4.3.2 Macros, Functions and Parameters

This section describes the removal of formal parameters of rule macros and functions,
and the removal of corresponding parameters from calls to these macros and functions.
The following variables are used in this section, in addition to the ones introduced
above:

fcs ∈ formulaCommaSeq, n, p ∈ N

Formal parameters are removed from a list of formal parameters if undefined holds
for their domain (the type). Removal of formal parameters starts with the rightmost
parameter.

remove(ps ’,’ x ’:’ D,V) =
remove(ps,V) iff undefined(D)
remove(ps,V) ’,’ x ’:’ remove(D,V) else

14

remove(x ’:’ D,V) =
” iff undefined(D)
x ’:’ remove(D,V) else

The function numfpar counts the number of formal parameters in a formal parameter
sequence. The function is used when removing parameters from a parameter sequence
(see below).

numfpar(fcs ’,’ exp) = numfpar(fcs) + 1
numfpar(exp) = 1
numfpar(ps ’,’ x ’:’ D) = numfpar(ps) + 1
numfpar(x ’:’ D) = 1

The function remfpar returns a set of names of formal parameters. The set in-
cludes all names of a formal parameter sequence for which undefined holds for the
corresponding domain.

remfpar(ps ’,’ x ’:’ D) =
{x} ∪ remfpar(ps) iff undefined(D)
remfpar(ps) else

remfpar(x ’:’ D) =
{x} iff undefined(D)
{} else

Formal parameters removed in a macro definition must be removed from the ar-
gument lists of macro calls. count assigns a code to a macro that describes which
parameters have been removed. The code function gets a list of parameters and a
number n (initially the number of arguments minus one) as arguments. If the domain
of the rightmost argument is undefined, 2n is added to the code of the remaining pa-
rameters with the number n− 1. E.g. for a sequence of four parameters, with the first
and the third undefined, the code is 22 + 20 = 5.

code(ps ’,’ x ’:’ D,n) =
code(ps, n− 1) + 2n iff undefined(D)
code(ps, n− 1) else

code(x ’:’ D,n) =
2n iff undefined(D)
0 else

count(MacroName) = code(ps,numfpar(ps)− 1)

The function removepar removes arguments from a macro call corresponding to
undefined formal parameters in the macro definition. The number n corresponds

15

the the position of the argument (initially the number of arguments minus one), the
number p to the code of the macro definition. If p is larger than 2n, the argument is
removed and removal is continued with the remaining parameters.

removepar(fcs ’,’ exp, n, p) =
removepar(fcs, n− 1, p− 2n) iff p− 2n > 0
removepar(fcs, n− 1, p) ’,’ exp else

removepar(exp, n, p) =
” iff p = 2n // n should be 0
exp else

A sequence of formulas is undefined if each formula in the sequence is undefined.

undefined(fcs, exp,V) iff undefined(fcs,V) ∨ undefined(exp,V)

4.3.3 Formal Reduction of ASM Rules

Rules specify transitions between states of the ASM. The basic rule is the update rule,
which updates a location of the state to a new value. All together, there are seven
kinds of rules for ASMs, for all of which we have formalised the reduction.

The left hand side of an update rule specifies a location of the ASM. The location
consists of a function f from the ASM signature and a tuple of elements fcs. If
undefined holds for either, the location lies outside the scope of the reduced ASM, and
the update rule is omitted. If undefined holds for the expression on the right hand
side of the update rule, we remove the update rule, retaining the previous value of the
location.

remove(f(fcs) := exp,V) =
skip iff undefined(f,V) ∨ undefined(fcs,V)∨

undefined(exp,V)
f(remove(fcs,V)) := remove(exp,V) else

The mapping of the if -rule (see below) depends on which predicate holds for the
guard exp of the rule. If the guard always evaluates to true (false), the if -rule can be
omitted, and removal continues with subrule R1 (R2). If the guard is undefined, the
rule is syntactically incorrect, and should not be reachable1. If none of the predicates
hold, the removal is applied recursively to the guard and the subrules of the if -rule,
leaving the rule itself intact.

remove(if exp then R1 else R2 endif, V) =
remove(R1,V) iff true(exp,V)

1This is a proof obligation that we have to verify manually. However, so far this has only occurred
in very few cases, which were the result of errors in the reduction profile.

16

remove(R2,V) iff false(exp,V)
skip iff undefined(exp,V)
if remove(exp,V) then remove(R1,V) else
else remove(R2,V) endif

The let-rule is a shortcut that binds the evaluation result of an expression in the
current state to a variable, which can be used inside the let-rule. In case the expression
exp is undefined, so is the variable x. The result is the mapping of the contained rule
R, with the variable x included in the set of locally undefined names V. The result of
the removal is the same as if the expression exp had been used directly in the rule R
instead of the variable x.

remove(let x = exp in R endlet, V) =
remove(R,V ∪ {x}) iff undefined(exp,V)
let x = remove(exp,V) in remove(R,V) else
endlet

In let-rules, we can additionally specify a type for the variable x in form of a domain
D. In that case, we can remove the let-rule in the same manner as if the expression
exp were undefined, if the domain D is undefined.

remove(let x : D = exp in R endlet, V) =
remove(R,V ∪ {x}) iff undefined(exp,V) ∨ undefined(D)
let x : remove(D,V) = remove(exp,V) in else
remove(R,V) endlet

The extend-rule dynamically imports a fresh ASM element from the reserve (an
infinite store of unused ASM elements), binding it to a variable x in the context of the
subrule R and including it in the ASM domain dn (given by name). In case the domain
name dn is undefined, i.e. has been removed from the ASM signature, the extend-rule
can be omitted, since elements of domain dn belong to a removed feature. However,
the subrule R might still contain parts not related to this feature - although it would
be a better style to move these parts outside the extend-rule. Therefore, the subrule
is not omitted by default, but replaced with its mapping by the remove function,
including the now unbound variable x in the set of locally undefined variables. This
leads to all occurrences of x being removed from the rule R.

remove(extend dn with x R endextend, V) =
remove(R,V ∪ {x}) iff undefined(dn,V)
extend dn with x remove(R,V) endextend else

The choose-rule nondeterministically takes an element from the finite set defined by
the constraint exp and binds it to the variable x. If no element satisfies the constraint,
as in the case where false holds, choose is equivalent to skip. Futhermore, if undefined
holds for the constraint, we assume that no element matches it. If true holds for the
constraint, the choose-rule is invalid since it ranges over a potentially infinie set.

17

remove(choose x : exp R endchoose, V) =
skip iff false(exp,V) ∨ true(exp,V)∨

undefined(exp,V)
choose x : remove(exp,V) remove(R,V) else
endchoose

Using typed ASMs, it is sensible to restrict the element x to a domain D as the
type of x. In the formal semantics of SDL-2000, all constraints of choose-rules have
the form ”x ∈ D∧ constraint” (constraint being optional). From the definition of true
and undefined on expressions (see 4.3.5), we can can conclude that these predicates
will not hold for a constraint of this form.

The do forall-rule performs a parallel update of the state, firing the rule R with
x bound to the element a, for all a ∈ {x | exp}, {x | exp} being a finite set. Removal
follows the same principles as with choose, as both choose-rule and do forall-rule
use elements from a finite set defined by a constraint. If false holds for the constraint,
the rule is equivalent to skip. Predicates true and undefined do not hold if exp has
the form ”x ∈ D ∧ constraint”.

remove(do forall x ’:’ exp R enddo,V) =
skip iff false(exp,V) ∨ true(exp,V)∨

undefined(exp,V)
do forall x ’:’ remove(exp,V) remove(R,V) else
enddo

Rule blocks in ASMs are fired in parallel. A sequence of rule blocks is broken down
to the mappings of the sub-rule blocks. This may result in a sequence of skip-rules
which can be reduced to a single skip. However, this is not part of the remove mapping,
but can be done in a subsequent optimisation step.

remove(R1 R,V) = remove(R1,V) remove(R,V)

4.3.4 Formal Reduction of ASM Domains

This section defines the remove function for expressions describing ASM domains, e.g.
union or tuple domains. The following variables are used, in addition to the variables
defined in previous sections:

s, s1, s2 ∈ simpledomain, t ∈ tupledomain, u ∈ uniondomain, ics ∈ itemCommaSeq.

A domain is removed if it is undefined. A union or product of several domains is
removed if all of the domains are undefined, otherwise only the undefined subdomains
are removed.

remove(dn,V) =
nodomain iff undefined(dn,V)
dn else

18

remove(dn mod ,V) =
nodomain iff undefined(dn)
dn mod else

remove((D),V) =
nodomain iff undefined(D,V)
(remove(D,V)) else

remove((D)–set,V) =
nodomain iff undefined(D,V)
(remove(D,V))–set else

remove([D],V) =
nodomain iff undefined(D,V)
[remove(D,V)] else

remove([D] mod ,V) =
nodomain iff undefined(D,V)
[remove(D,V)] mod else

remove(D1 → D2,V) =
nodomain iff undefined(D1,V) ∨ undefined(D2,V)
remove(D1,V) → remove(D2,V) else

remove(s1 × s2,V) =
” iff undefined(s1 × s2,V)
remove(s1,V) iff undefined(s2,V)
remove(s2,V) iff undefined(s1,V)
remove(s1,V)× remove(s2,V) else

remove(t× s,V) =
” iff undefined(t× s,V)
remove(t,V) iff undefined(s,V)
remove(s,V) iff undefined(t,V)
remove(t,V)× remove(s,V) else

remove(’(’ ’)’,V) = ’(’ ’)’

remove(s1 ∪ s2,V) =
” iff undefined(s1 ∪ s2,V)
remove(s1,V) iff undefined(s2,V)
remove(s2,V) iff undefined(s1,V)
remove(s1,V) ∪ remove(s2,V) else

remove(u ∪ s,V) =
” iff undefined(u ∪ s,V)
remove(u,V) iff undefined(s,V)
remove(s,V) iff undefined(u,V)
remove(u,V) ∪ remove(s,V) else

remove(’{’ ics ’}’,V) = if undefined(ics,V) then ” else ’{’ remove(ics,V) ’}’ endif

19

The predicate undefined on domains specifies if a domain expression is undefined,
given the basic domains that have been removed. A domain expression is undefined
if the domain name it comtains is undefined. In case of union and product of two
domains, both domains must be undefined - if only one is undefined, a valid domain
definition can be extracted by removing the undefined domain from the expression.

undefined(dn∗,V) iff undefined(dn)
undefined(dn∗∗,V) iff undefined(dn)
undefined(dn+,V) iff undefined(dn)

undefined(dn–set,V) iff undefined(dn)
undefined((D),V) iff undefined(D,V)

undefined((D)–set,V) iff undefined(D,V)
undefined([D],V) iff undefined(D,V)

undefined([D]∗,V) iff undefined(D,V)
undefined([D]+,V) iff undefined(D,V)

undefined(D1 → D2,V) iff undefined(D1,V) ∨ undefined(D2,V)

undefined(s1 × s2,V) iff undefined(s1,V) ∧ undefined(s2,V)
undefined(t× s,V) iff undefined(t,V) ∧ undefined(s,V)
undefined(‘(‘ ‘)‘,V) iff false

undefined(s1 ∪ s2,V) iff undefined(s1,V) ∧ undefined(s2,V)
undefined(u ∪ s,V) iff undefined(u,V) ∧ undefined(s,V)

undefined(′{′ics′}′,V) iff undefined(ics,V)
undefined(ics′,′ x,V) iff x ∈ V

undefined(ics′,′ kw,V) iff undefined(ics,V) ∧ undefined(kw)
undefined(ics′,′ kw1 kw2,V) iff undefined(ics,V) ∧ undefined(kw1) ∧

undefined(kw2)
undefined(ics′,′ Literal,V) iff false

4.3.5 Formal Reduction of ASM Expressions

Expressions are terms over the signature of the SVM. Additionally, ASMs include
common mathematical structures like boolean algebra, or natural numbers. Our formal
reduction covers all operations defined in [3]. In the truth tables defined in this section,
we use the following shortcuts:

20

T Predicate true holds
F Predicate false holds
U Predicate undefined holds
- ¬T ∧ ¬F ∧ ¬U

Furthermore, we use the variables e, e1, e2, e3 ∈ formula, nseq ∈ nameCommaSeq
and pcs ∈ primaryCommaSeq.

Boolean Operators

Boolean Operators take boolean expressions as arguments, therefore the predicates
true, false and undefined apply. With binary boolean operators, we have to consider
sixteen different combinations of predicates holding for the subexpressions - four for
each subexpression. In order to improve readability, we combine the definitions of
true, false, undefined and remove for boolean operators in a four-valued truth table.
Valid boolean expressions always evaluate to either true or false. Therefore, it is
undesirable that the predicate undefined holds for such an expression. However, this
can not be avoided in every case.

We define truth tables for all boolean operators from the concrete syntax of ASMs:
negation (¬), disjunction (∨), conjunction (∧), implication (→) and equivalence (↔).
In order to ensure consistent results, we derive to definition of conjunction, implication
and equivalence from the definitions of negation and disjunction. For the predicates
true and false, the subtables match the truth tables for the corresponding boolean
operators with the truth values true and false, respectively. If all subexpressions of
the operator are undefined, so is the composite expression.

The truth table for the negation directly follows from these considerations. In case
no predicate holds for the boolean expression e1 (-), removal maps to the original term,
with removal applied to the subexpression e1.

e1 ¬ T F U -
F T U ¬e1

If true holds for one of the subexpressions e1 or e2, true holds for e1∨e2. If undefined
holds for one of the subexpressions, it is omitted and the result depends exclusively on
the other subexpression. If false holds for one of the subexpressions, the subexpression
is omitted but can still influence the final result (as in the case false and undefined).

e2

e1 ∨ T F U -
T T T T T
F T F F e1

U T F U e1

- T e2 e2 e1 ∨ e2

e1 ∧ e2 is defined as ¬(¬e1 ∨ ¬e2), the truth table is derived accordingly.

21

e2

e1 ∧ T F U -
T T F T e1

F F F F F
U T F U e1

- e2 F e2 e1 ∧ e2

e2

e1 → T F U -
T T T T T
F F T F ¬e1

U F T U ¬e1

- e2 T ¬e1 e1 → e2

e1 → e2 is defined as ¬e1 ∨ e2, the truth table is derived accordingly.
e1 ↔ e2 is defined as (e1 → e2) ∧ (e2 → e1), the truth table is derived accordingly.

e2

e1 ↔ T F U -
T T F F e1

F F T F ¬e1

U F F U F
- e2 ¬e2 F e1 ↔ e2

true(if e then e1 else e2 endif) iff (true(e) ∧ true(e1)) ∨
(false(e) ∧ true(e2))

false(if e then e1 else e2 endif) iff (true(e) ∧ false(e1)) ∨
(false(e) ∧ false(e2))

undefined(if e then e1 else e2 endif) iff (true(e) ∧ undefined(e1)) ∨ undefined(e)
∨(false(e) ∧ undefined(e2)) ∨
(undefined(e1) ∧ undefined(e2))

Quantification

Quantification consists of two subexpressions - the expression e1 representing the set
of elements in the range of the quantification, and the boolean-valued expression e2 as
the predicate. In the context of quantification, we interpretate e1 as the empty set if
the predicate undefined holds.

Qx ∈ e1 : e2, Q ∈ {∀,∃,∃1}

22

Quantification over an empty set (i.e., undefined holds for e1) is always true in
case of universal quantification, and always false in case of existential quantification.
Furthermore, universal quantification is always true of the boolean expression e2 is
always true, and existential quantification is always false iff e2 is always false. This
leads to the following definitions of the remove function and respective predicates.

e1

e2 ∀ T F U -
U T T T T
- T - U -

remove(∀nseq ∈ e1‘ : ‘e2,V) =
true iff undefined(e1,V) ∨ true(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

e1

e2 ∃ T F U -
U F F F F
- - F U -

remove(∃nseq ∈ e1‘ : ‘e2,V) =
false iff undefined(e1,V) ∨ false(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

e1

e2 ∃1 T F U -
U F F F F
- - F U -

remove(∃1nseq ∈ e1‘ : ‘e2,V) =
false iff undefined(e1,V) ∨ false(e2,V)
undefined iff ¬undefined(e1,V) ∧ undefined(e2,V)
∀nseq ∈ remove(e1,V)‘ : ‘remove(e2,V) else

Relational Operators

Binary relational operators form boolean expressions, comparing two subexpressions.
Unlike boolean or arithmetical operators, it is not possible to omit the operator and
retain one of the subexpressions, since the subexpressions are not boolean expressions.
In our approach, we do not evaluate the relational operators >,<,≥,≤ in respect to
their truth-value. Therefore, these expressions are undefined if one of their subexpres-
sions is undefined. Removal is defined accordingly.

23

e2 op ∈ {<, >,≤,≥}
e1 op U -

U U U
- U -

remove(e1 > e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) > remove(e2,V) else

remove(e1 < e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) < remove(e2,V) else

remove(e1 ≥ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ≥ remove(e2,V) else

remove(e1 ≤ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ≤ remove(e2,V) else

A special relational operator is the element-of operator e1 ∈ e2, where e1 denotes
an element and e2 denotes a set. The element-of operator appears frequently in the
guard of if -rules. The expression e2, denoting a set, is interpreted as the empty set
if undefined holds. Therefore, false (true) holds for the element-of (not element-of)
expression if e2 is undefined. Likewise, an undefined expression should not be an
element of any set. Note that according to this definition, undefined can not hold for
an element-of expression.

e2

e1 ∈ U -
U F F
- F -

e2

e1 6∈ U -
U T T
- T -

The equality operator is as significant as the element-of operator. For the equality
operator, we take three special ASM elements into account - the element undefined,
the empty set (∅) and the empty sequence (empty). We interpretate an undefined
expression e as undefined, empty set or empty sequence, depending on the context.
Therefore, true holds if an undefined e is equated with one of these elements. Likewise,
false holds if an undefined expression is said to be unequal to one of these elements.
Note that equality is symmetric, so if true holds for e = undefined, it also holds for
undefined = e.

Excluding the cases addressed above, two expressions should never be equal if one
expression is undefined and the other expression is not.

true(e = undefined,V) iff undefined(e,V)

24

false(e 6= undefined,V) iff undefined(e,V)
true(e = ∅,V) iff undefined(e,V)
false(e 6= ∅,V) iff undefined(e,V)

true(e = empty ,V) iff undefined(e,V)
false(e 6= empty ,V) iff undefined(e,V)

false(e1 = e2,V) iff ¬true(e1 = e2,V) ∧
(undefined(e1,V) ∧ ¬undefined(e2,V) ∨
¬undefined(e1,V) ∧ undefined(e2,V))

true(e1 6= e2,V) iff ¬false(e1 6= e2,V) ∧
(undefined(e1,V) ∧ ¬undefined(e2,V) ∨
¬undefined(e1,V) ∧ undefined(e2,V))

undefined(e1 = e2,V) iff undefined(e1,V) ∧ undefined(e2,V)
undefined(e1 6= e2,V) iff undefined(e1,V) ∧ undefined(e2,V)

Arithmetic Operators

Arithmetic operators are removed if one of their subexpressions is undefined. Re-
moval is less strict for plus and minus, which are only removed if both expressions are
undefined.

remove(−e,V) =
undefined iff undefined(e,V)
−remove(e,V) else

remove(e1 + e2,V) =
undefined iff undefined(e1,V) ∧ undefined(e2,V)
remove(e1,V) iff undefined(e2,V)
remove(e2,V) iff undefined(e1,V)
remove(e1,V) + remove(e2,V) else

remove(e1 − e2,V) =
undefined iff undefined(e1,V) ∧ undefined(e2,V)
remove(e1,V) iff undefined(e2,V)
remove(e2,V) iff undefined(e1,V)
remove(e1,V)− remove(e2,V) else

remove(e1 ∗ e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) ∗ remove(e2,V) else

remove(e1 / e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) / remove(e2,V) else

remove(e1 MOD e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) MOD remove(e2,V) else

25

remove(e1 DIV e2,V) =
undefined iff undefined(e1,V) ∨ undefined(e2,V)
remove(e1,V) DIV remove(e2,V) else

undefined(−e,V) iff undefined(e,V)
undefined(e1 + e2,V) iff undefined(e1,V) ∧ undefined(e2,V)
undefined(e1 − e2,V) iff undefined(e1,V) ∧ undefined(e2,V)
undefined(e1 ∗ e2,V) iff undefined(e1,V) ∨ undefined(e2,V)
undefined(e1 / e2,V) iff undefined(e1,V) ∨ undefined(e2,V)

undefined(e1 mod e2,V) iff undefined(e1,V) ∨ undefined(e2,V)
undefined(e1 rem e2,V) iff undefined(e1,V) ∨ undefined(e2,V)

Sets and Sequences

Sequence (set) composition constructs a sequence (set) by applying expression e1 to
elements from e2 for which the boolean expression e3 holds. If expression e1 or e3

are undefined, so is the sequence/set. In that case, false will hold when testing if an
element is contained in the structure. If undefined holds for e2 (i.e., e2 is interpreted
as empty) or false holds for e3, the resulting sequence is empty, and the resulting set
is the empty set.

< e1 | x ∈ e2 : e3 >, {e1 | x ∈ e2 : e3}

remove(< e1 | x ∈ e2 : e3 >,V) =
undefined iff undefined(e1,V) ∨ undefined(e3,V)
empty iff (false(e3,V) ∨ undefined(e2,V))

∧¬undefined(e1,V)
< remove(e1,V) | x ∈ remove(e2,V) else
: remove(e3,V) >

remove({e1 | x ∈ e2 : e3},V) =
undefined iff undefined(e1,V) ∨ undefined(e3,V)
∅ iff (false(e3,V) ∨ undefined(e2,V))

∧¬undefined(e1,V)
{remove(e1,V) | x ∈ remove(e2,V) else
: remove(e3,V)}

undefined(< e1 | x ∈ e2 : e3 >,V) iff undefined(e1,V) ∨ undefined(e3,V)
undefined({e1 | x ∈ e2 : e3},V) iff undefined(e1,V) ∨ undefined(e3,V)

26

Operations on sets and sequences need at least one argument for which undefined
doesn’t hold, otherwise undefined holds for the operation. Removal is straightforward,
the definition is equivalent to the definition for the arithmetic operators plus and
minus.

op ∈ {| |,
S
}

e1 op U -
U -

e2 op ∈ {∩,∪,∩}
e1 op U -

U U -
- - -

For the operations map (7→) and range (..), undefined holds if undefined holds for
any subexpression. The definition of removal is equivalent to the arithmetic operator
∗.

e2 op ∈ {7→, ..}
e1 op U -

U U U
- U -

Function and Macro Calls

A macro call is removed if one of the parameters passed is undefined, or the macro
name itself has been marked as undefined. Otherwise, parameters that correspond
to removed formal parameters from the rule macro definition are removed from the
parameter list of the macro call. This is done with the function remfpar defined
in Section 4.3.2. count is a natural number that holds the information which formal
parameters were removed.

remove(MkName(),V) =
undefined iff undefined(MkName)
MkName() else

remove(MkName(fcs),V) =
skip iff undefined(MkName) ∨ undefined(fcs,V)
MkName(removepar(fcs,numfpar(fcs)− 1, count(MkName)))

else

undefined(MkName(),V) iff undefined(MkName)
undefined(MkName(fcs),V) iff undefined(MkName) ∨ undefined(fcs,V)

Function calls are similar to rule macro calls. A function call can either refer to
a location of the ASM, or a derived function defining an expression. Removal for
function calls is identical to removal for macro calls, removing the call if either the
parameters or the function itself are undefined.

27

remove(f,V) =
undefined iff undefined(f)
f else

remove(exp.f,V) =
undefined iff undefined(f) ∨ undefined(exp,V)
remove(exp,V).f else

remove(f(fcs),V) =
undefined iff undefined(f) ∨ undefined(fcs,V)
f(removepar(fcs,numfpar(fcs)− 1, count(f)))

else

undefined(f(fcs),V) iff undefined(f) ∨ undefined(fcs,V)
undefined(f,V) iff undefined(f)

undefined(exp.f,V) iff undefined(f) ∨ undefined(exp,V)

Names and keywords in expressions are removed if they are marked as undefined,
otherwise they are left untouched. Predicate undefined never holds for literals (for
example, natural numbers) and the special ASM element undefined.

remove(DomainName,V) = if undefined(DomainName) then undefined else DomainName endif
remove(SynName,V) = if undefined(SynName) then undefined else SynName endif
remove(ProgramName,V) = if undefined(ProgramName) then undefined else ProgramName endif
remove(Keyword,V) = if undefined(Keyword) then undefined else Keyword endif
remove(Literal,V) = Literal
remove(undefined,V) = undefined
remove(<pcs>,V) = <remove(pcs,V)>

undefined(DomainName,V) iff undefined(DomainName)
undefined(SynName,V) iff undefined(SynName)

undefined(ProgramName,V) iff undefined(ProgramName)
undefined(Keyword,V) iff undefined(Keyword)
undefined(Literal,V) iff false

undefined(undefined,V) iff false

undefined(<pcs>,V) iff undefined(pcs,V)

28

5 Consistency of SDL Profiles

A set of SDL profiles is called consistent, if any specification that can be stated in
these profiles behaves exactly the same way in each profile. Deriving the profiles
from a common language definition enables us to make statements about consistency,
because, unlike profiles defined independently, the derived profiles share many common
parts.

A run of an ASM is a sequence of states, where each subsequent state is the result of
firing all rules whose conditions are true on the preceding state. For non-deterministic,
multi-agent ASMs, the legal behaviour is given by a set of runs, each run in the set
describing a possible execution of the system. Two SDL profiles are considered consis-
tent, if they yield the same set of runs of their respective ASMs for all specifications
contained in both profiles.

In order to prove consistency, it is sufficient to show that only dead ASM rules
are removed. This property does not follow automatically from the formally defined
operations for removal, since they rely on heuristics in some parts. However, based on
these operations, it is possible to derive proof obligations that have to be verified in
order to prove consistency.

E.g., during removal, an if -rule can be replaced by the subrule in the then-block of
the rule, if the predicate true holds for the guard. To prove consistency, it is sufficient
to prove that for all specifications of the SDL profile, the guard evaluates to true in
all reachable states1. Likewise, if the predicate false holds for the guard, we have to
prove that for all specifications of the SDL profile, the guard evaluates to false in
all reachable states. In case undefined holds for the guard, we have to prove that the
if -statement cannot be reached at all.

ASM-Listing 1 shows a part of the formal language definition that was removed
as part of the save feature of SDL. For SDL profiles that do not contain the save
feature, no grammatical elements of Save-signalset exist. Therefore, selecting the
Save-signalset for any state yields undefined, and selecting Signal-identifier-set for
the element undefined yields the empty set. Since Save-signalset is not modified
in the formal language definition, this holds for any reachable state of the ASM. An
element cannot be contained in an empty set, therefore the guard is always false, and
omitting the if -statement leads to a consistent definition for specifications without
save.

1 if Self .signalChecked.signalType ∈
2 sn.stateAS1.s−Save−signalset.s−Signal−identifier−set then
3 Self .SignalSaved := True

1This condition is very generic. It would suffice to show that the guard is always true for all
reachable states that lead to the firing of the if -rule.

29

4 endif

ASM-Listing 1: Removed Part of Semantics Definition

Choose. Choose nondeterministically selects an element that satisfies the constraint
given by expression exp. If a choose-rule is removed, we have to prove consistency
by proving the expression exp to be false in any reachable state, and therefore -
according to the semantics of ASMs - the choose-rule equates to an empty update
set. Alternatively, we can prove that the choose-rule cannot be reached.

Extend. extend-rules are removed if they extend a domain that has been removed
from the ASM signature. For a domain that is associated with a language feature, an
extension of the domain must not be reached if that feature is removed. In order to
prove consistency, we therefore have to prove that such a rule cannot be reached.

Rule Macro Definition. A rule macro can be removed without affecting consistency
if no corresponding rule call exists in a reachable part of the ASM, or if the body of
the rule macro can be reduced to skip while maintaining consistency.

Boolean Expressions Parts of boolean expressions are removed if they have no in-
fluence on the final result, e.g. if true holds for a subexpression of a conjunction. In
this case, the proof obligation is to show that the subexpression is always true for
specifications of the SDL profile.

Proof obligations on boolean expressions can be split into proof obligations on subex-
pressions, as shown for ∧ and ∨ below. E.g., in order to prove consistency for predicate
true on e1 ∧ e2, we can prove consistency for predicate true on e1 and e2.

true(e1 ∧ e2) iff true(e1) and true(e2) (5.1)
false(e1 ∧ e2) iff false(e2) or false(e2) (5.2)
true(e1 ∨ e2) iff true(e1) or true(e2) (5.3)
false(e1 ∨ e2) iff false(e1) and false(e2) (5.4)

Relational Operators Relational Operators like <,>,≤,≥ are undefined if one of
their subexpressions is undefined. To prove consistency, in this case we have to prove
that the expression cannot be reached.

In case of the element-of operator e1 ∈ e2, two heuristics were used. If undefined
holds for the expression on the right hand side, the set is interpreted as empty and
true holds for the expression. In this case, we have to prove that the right hand side
always equates to the empty set. In case undefined holds for the expression on the
left hand side, we have to prove that the element described by this expression is not
contained in the set on the right hand side in any reachable state.

30

6 SDL-Profile Tool

Based on the formalisation provided in Section 4, we have implemented a tool called
SDL-profile tool in order to automate the reduction process, providing visible results.
The tool reads the formal semantics definition, performs the remove operation based
on a reduction profile, and outputs a reduced version of the formal semantics. The
reduction profile is a list of domain names, function names and macro names that are
removed from the ASM signature (or from the set of rules, in the case of macro names),
possibly defining default values, e.g. for predicates. Figure 6.1 shows the sequence of
steps performed during the removal, and the tools used for each step.

asm ast ast' ast' ast'parse normalise remove clean

flex,
yacc,
kimwitu

kimwitu c++ kimwitu

kimwitu

unparse

Figure 6.1: Tool Chain of the SDL-Profile Tool

6.1 Tool Chain

Parser

The parser takes an ASM specification as input and creates an abstract syntax tree
representation of the specification as output. It is generated out of specifications of the
lexis, grammar and abstract syntax of Abstract State Machines, as used in the formal
semantics of SDL-2000 [3]. The specification of the abstract syntax is translated by
kimwitu++ [12] to a data structure for the abstract syntax tree, using C++ classes.
Scanner and parser are generated by flex and bison, respectively. Apart from minor
differences, the parser is identical to the parser used in [16].

Normalisation

The normalisation step transforms the abstract syntax tree to a pre-removal normal
form. The transformation is specified by rewrite rules on the abstract syntax tree.
The rewrite rules are translated to C++ functions by the kimwitu tool. The main
function of the normalisation step is to split up complicated abstract syntax rules, in
order to make the definition of the remove function easier.

31

Remove

The remove step is the implementation of the removal formalised in Section 4. For
each type of node (phylum) in the abstract syntax definition, a remove function is
introduced. The remove function performs removal for each term of the respective
phylum, e.g. the terms IfThenElse, Choose, and Extend for the rule phylum. It
returns a term of the respective phylum as result – e.g. the remove function for rules
always returns a term of type rule.

For a term of a phylum, removal starts by checking conditions consisting of the
predicates true, false and undefined , as defined in the formalisation of the reduction
process. If a condition evaluates to true, a modified term is returned, calling re-
move recursively on the subterms of the term if necessary. E.g., for the rule term
IfThenElse, if the predicate true holds for expression exp, removal continues with the
then-part, if the predicate false holds for expression exp, removal continues with the
else-part. If undefined holds for the expression exp, the rule term Skip is returned.

IfThenElse(exp, r1, r2): {
if (eval_true(exp,V)) { return remove(r1,V); };
if (eval_false(exp,V)) { return remove(r2,V); };
if (eval_undef(exp,V)) { return Skip(); };
return IfThenElse(remove(exp,V), remove(r1,V), remove(r2,V));

}

Cleanup

The cleanup step transforms superfluous rules resulting from the removal step to a
post-removal normal form. The normal form is achieved by defining term rewrite rules
in kimwitu. Unlike removal, the rewrite rules apply anywhere where their left hand
side matches, and are applied as long as a match is found.

The cleanup step only removes trivial parts of the ASM specification. The resulting
specification is semantically equivalent to the specification before the cleanup step.

Iteration

Given a completely defined reduction profile, only one run of the SDL-profile tool is
needed to generate a reduced ASM semantics definition. In case the reduction profile is
incomplete, the profile tool can identify further names in the ASM signature that can
be removed, and iterate the removal process. E.g., a function in the ASM signature
with a target domain that has been removed during the previous removal step, is
included in the reduction profile of a subsequent iteration.

Unparsing

Unparsing traverses the abstract syntax tree and outputs a string representation of
every node. The result is a textual representation of the formal semantics tree in the
original input format. Therefore, the output of the profile tool can be used as the input

32

for a subsequent run of the profile tool. We also provide different output formats, e.g.
a Latex document of the formal semantics, or a compilation to C++.

6.2 Application of the SDL-Profile Tool

Given an ASM formal semantics definition and a reduction profile, the SDL-profile
tool generates a reduced formal semantics definition in the original format. In order
to validate the removal process, we compare the original semantics definition with
the reduced version. For this, we have used graphical diff-based tools (e.g., tkdiff) to
highlight the differences between the versions. Using the SDL-profile tool, we have
created reduction profiles for several language modules, such as timers, exceptions,
save, composite states and inheritance. We have also created reduction profiles for
language profiles like Safire and Core, resulting in formal semantics definitions that,
with small modifications, match these SDL profiles.

ASM Listings 1 and 2 show an excerpt of the formal semantics definition before
and after applying the SDL-profile tool, using a reduction profile for SDL exceptions.
The reduction profile contains, besides other function and macro names, the function
name currentExceptionInst, which is interpreted as undefined in the context below.
Therefore, the predicate false holds for the guard of the if -rule, and the first part of
the if -rule is removed.

1 SelectTransitionStartPhase ≡
2 if (Self .currentExceptionInst 6= undefined) then
3 Self .agentMode3 := selectException
4 Self .agentMode4 := startPhase
5 elseif (Self .currentStartNodes 6= ∅) then
6 ...
7 else
8 ...
9 endif

ASM-Listing 1: Macro SelectTransitionStartPhase before Reduction

1 SelectTransitionStartPhase ≡
2 if (Self .currentStartNodes 6= ∅) then
3 ...
4 else
5 ...
6 endif

ASM-Listing 2: Macro SelectTransitionStartPhase after Reduction

33

7 Related Work

A modular language definition as described in this paper can be found in the language
specification of UML [15, 14]. The abstract syntax of UML is defined using a meta-
model approach, using classes to define language elements and packages to group
language elements into medium-grained units. The core of the language is defined by
the Kernel package, specifying basic elements of the language such as packages, classes,
associations and types. However, each meta-model class/language element has only
an informal description of its semantics.

UML has a profile mechanism that allows metaclasses from existing metamodels to
be extended and adapted, using stereotypes. Semantics and constraints may be added
as long as they are not in conflict with the existing semantics and constraints. E.g.,
the profile mechanism has been used to define a UML profile for SDL, enabling the
use of UML 2.0 as a front-end for SDL-2000 [11].

ConTraST [1] is an SDL to C++ transpiler that generates a readable C++ repre-
sentation of an SDL specification by preserving as much of the original structure as
possible. The generated C++ code is compiled together with a runtime environment
that is a C++ implementation of the formal semantics defined in Z100.F3. ConTraST
is based on the textual syntax of SDL-96, and supports SDL profiles syntactically
through deactivation of language features.

In [13], the concept of program slicing is extended to Abstract State Machines. For
an expressive class of ASMs, an algorithm for the computation of a minimal slice of
an ASM, given a slicing criterion, is presented. While the complexity of the algorithm
is acceptable in the average case, the worst case complexity is exponential.

34

8 Conclusions and Outlook

In this paper, we have introduced the concept of SDL profiles as well-defined subsets
of SDL, leading to smaller, more understandable language definitions. Tool support
can be based on these profiles, leading to faster tool development and less expensive
tools. Based on the smaller language definitions, code optimisations can be performed
when generating code from a specification.

We have argued for the importance of formal semantics for language definitions, and
the importance of deriving the formal semantics of SDL profiles from a common formal
semantics definition. This allows us to compare the formal semantics of different SDL
profiles, and to make assertions about their consistency.

To achieve deterministic results, we have formalised the extraction of the formal
semantics for SDL profiles from the complete formal semantics of SDL-2000. The
extraction is based on recognising and removing dead ASM rules from the formal
semantics definition, starting from a reduced ASM signature. The reduction of the
ASM signature is derived from the abstract syntax of removed language modules.
The extraction has been automated by the SDL-profile tool, providing visible results.
This tool has been used to create several language profiles for SDL-2000, by removing
SDL language modules from the formal semantics definition, such as e.g. exceptions,
timers, save and composite states. The reduction achieved is significant. E.g., the
formal semantics definition for Safire has been reduced to less than 2300 lines of
specification, and less than 1100 lines for a small core of SDL, from about 3700 lines
of the complete formal semantics.

Based on the formally defined process for the derivation of formal language def-
initions for SDL profiles, we can define precise criteria for the consistency of SDL
profiles. Currently, some consistency criteria have to be verified manually. Our future
work will focus on improving the extraction process, so that further criteria can be
checked automatically.

35

Bibliography

[1] Fliege, Ingmar ; Grammes, Rüdiger ; Weber, Christian: ConTraST - A Con-
figurable SDL Transpiler And Runtime Environment. In: Gotzhein, Reinhard
(Hrsg.): SAM’06 - Fifth Workshop on System Analysis and Modelling, Kaiser-
slautern, Germany, 2006. – to be published

[2] Glässer, Uwe ; Gotzhein, Reinhard ; Prinz, Andreas: The Formal Semantics
of SDL-2000 - Status and Perspectives. In: Computer Networks 42 (2003), Nr. 3,
S. 343–358

[3] Glässer, Uwe ; Gotzhein, Reinhard ; Prinz, Andreas: An Introduction To
Abstract State Machines / Department of Computer Science, University of Kaiser-
slautern. 2003 (326/03). – Forschungsbericht

[4] Gurevich, Yuri: Evolving Algebras 1993: Lipari Guide. In: Börger, Egon
(Hrsg.): Specification and Validation Methods. Oxford University Press, 1995, S.
9–36

[5] Gurevich, Yuri: May 1997 Draft of the ASM Guide / EECS Department,
University of Michigan. 1997 (CSE-TR-336-97). – Forschungsbericht

[6] ITU: Recommendation Z.100 (08/02): Specification and Description Language
(SDL). Geneva, 2002

[7] ITU: Recommendation Z.100 (2002) Amendment 1 (10/03): Specification and
Description Language (SDL). Geneva, 2003

[8] ITU: Recommendation Z.100 (2002) Corrigendum 1 (08/04): Specification and
Description Language (SDL). Geneva, 2004

[9] ITU Study Group 10: Draft Z.100 Annex F2 (11/00). 2000

[10] ITU Study Group 10: Draft Z.100 Annex F3 (11/00). 2000

[11] ITU Study Group 17: UML Profile for SDL. 2005. – Draft Recommendation
Z.109

[12] Löwis, Martin von ; Piefel, Michael: The Term Processor Kimwitu++. In:
Callaos, Nagib (Hrsg.) ; Hernández-Encinas, Luis (Hrsg.) ; Yetim, Fahri
(Hrsg.): SCI 2002: The 6th World Multiconference on Systemics, Cybernetics
and Informatics, Orlando, USA, 2002, S. 182–186

36

[13] Nowack, Antje: Slicing Abstract State Machines. In: Zimmermann, Wolf
(Hrsg.) ; Thalheim, Bernhard (Hrsg.): Abstract State Machines 2004. Advances
in Theory and Practice, Lutherstadt Wittenberg, Germany Bd. 3052, Springer,
Januar 2004 (LNCS), S. 186–201

[14] Object Management Group: Unified Modeling Language Specification, Ver-
sion 1.3. 2000. – www.uml.org

[15] Object Management Group: Unified Modeling Language: Superstructure,
Version 2.0. 2005. – www.uml.org

[16] Prinz, Andreas ; Löwis, Martin von: Generating a Compiler for SDL from the
Formal Language Definition. In: Reed, Rick (Hrsg.) ; Reed, Jeanne (Hrsg.):
SDL 2003: System Design Bd. 2708, Springer, 2003 (LNCS), S. 150–165

[17] SDL Task Force: SDL+ - The Simplest, Useful ’Enhanced SDL-Subset’ for the
Implementation and Testing of State Machines. 2005. – www.sdltaskforce.org

37

