
Model-Driven Engineering
of Ambient Intelligence Systems with SDL:

Design, Implementation, and Performance Simulation

I. Fliege, A. Geraldy, R. Gotzhein, T. Kuhn, C. Webel

Technical Report 342/05

Model-Driven Engineering
of Ambient Intelligence Systems with SDL:

Design, Implementation, and Performance Simulation

I. Fliege, A. Geraldy, R. Gotzhein, T. Kuhn, C. Webel

Computer Science Department, University of Kaiserslautern, Kaiserslautern, Germany
{fliege,geraldy,gotzhein,kuhn,webel}@informatik.uni-kl.de

Technical Report 342/05

Computer Science Department
University of Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany

Technical Report

Model-Driven Engineering of Ambient

Intelligence Systems with SDL:

Design, Implementation, and

Performance Simulation

I. Fliege A. Geraldy R. Gotzhein T. Kuhn C. Webel

{fliege, geraldy, gotzhein, kuhn, webel}@informatik.uni-kl.de

Abstract

OMG’s Model-Driven ArchitectureTM initiative is a decisive step to place the ab-
stract, formal system model in the center of the development activity. In this paper,
we build on and refine this idea, using ITU-T’s SDL as design language. We present
a comprehensive, holistic model-driven approach that covers the entire development
trajectory, from the initial requirements to the system in execution, with specific
focus on the peculiarities of ambient intelligence systems (e.g., scarce and dynamic
resource situations, adaptivity, cross-layer integration). With our reuse methodolo-
gies, we support transformations during the early development steps. With our tool
chain, we replace manual coding steps entirely. Furthermore, we address model-
driven performance simulation, and demonstrate that the platform-specific model
can be used as a common code base for the generation of simulation and production
code. All steps are illustrated by excerpts from the development of the Assisted
Bicycle Trainer, an ambient intelligence system supporting the training of a group
of cyclists.

1

1 Introduction

Model-driven development is a software engineering approach that places the abstract,
formal system model in the center of the development activity [1]. The objective is
that models guide and direct all development activities, ranging from system design over
code generation and deployment to system maintenance, and resulting both in quality
improvements and productivity increases. Model-driven development is promoted by
the Object Management Group in the Model-Driven ArchitectureTM initiative [8], and
supported by the UML 2.0 [9]. Also, the model-driven approach is being applied in the
telecommunications industry, where it is combined with SDL, the Specification and De-
sign Language [5], internationally standardized by the International Telecommunications
Union (ITU).

A key idea of model-driven development is the separation of the system design from
platform-specific details. While this seems feasible for platforms offering sufficient flex-
ibility and resources e.g., J2EE, .NET, CORBA [8], it is more difficult for restricted,
hardware-specific and heterogeneous platforms as found, for instance, in the area of
Ambient Intelligence (AmI) [7]. AmI systems provide ubiquitous services that enhance
human capabilities and the quality of life by distributed intelligent electronic environ-
ments composed of unobtrusive electronic devices, embedded into the surrounding world
and interconnected through wireless ad-hoc networks. They are sensitive to the pres-
ence of humans and objects, can react in response to a person and its environment, and
can be tailored to a person’s needs. AmI systems will have an impact on all spheres of
our life, including professional work, leisure activities, public health, transportation, and
communication.

Due to hardware-specific and heterogeneous platforms, model-driven development is a
major challenge in the area of Ambient Intelligence, with specific focus on the following
aspects:

• Model-driven adaptation. AmI systems operate under scarce and/or dynamically
varying resources, such as computation power, memory, connectivity, bandwidth,
and energy. System functionalities strongly depend on the current resource situa-
tion. Therefore, AmI systems have to adapt to the resource situation by upgrading
or downgrading their quality of service. As a consequence, resources and adapta-
tion mechanisms have to be incorporated into the system model, using adequate
abstractions.

• Model-driven cross-layer integration. The nodes of AmI systems typically commu-
nicate via ad-hoc networks, i. e. wireless, mobile, self-organizing networks that
come into existence by the mere presence of nodes with matching communication
facilities. Again, resources are a decisive factor, requiring highly specialized com-
munication protocols that can adapt to the resource situation. As a consequence,
the communication system has to be incorporated into the system model. As a

2

further consequence, the abstraction layers of AmI systems should be harmonized,
requiring cross-layer integration to be represented in the system model.

• Model-driven performance simulation. AmI systems usually operate under certain
real-time constraints, which calls for performance assessments. These assessments
have to take resource bottlenecks, such as communication bandwidth and con-
nectivity, into account and should faithfully reflect the behavior of the system in
operation. However, waiting until the system is actually deployed before the as-
sessment becomes feasible may not be a good idea. Instead, the assessment could
be based on a performance simulation of the system model. As a consequence,
all functionalities that have a major influence on the system performance are to
be incorporated into this model. To run performance simulations, this model is
extended by abstract, sufficiently accurate resource models.

In this paper, we build on and refine the idea of placing the abstract, formal system
model in the center of the development activity, using SDL as design language. Our
process model takes the OMG MDA as a starting point, and refines it on the implemen-
tation side to meet the requirements of AmI systems. The transformation of the process
independent model takes place in several steps, and is supported by heuristics and reuse
methods as well as by a syntactically and semantically integrated tool chain. We have
complemented existing commercial development tools, replacing extensive manual coding
steps by generation techniques. Thus, the entire development trajectory from the system
requirements to the system in execution is supported both from the methodological and
the tooling side, yielding a comprehensive, holistic model-driven engineering approach
for the development of AmI systems. The approach is illustrated by the development
of the Assisted Bicycle Trainer, an AmI system supporting the training of a group of
cyclists, from the initial requirements to the system in execution.

To assess the performance of AmI systems, we use the platform-specific design model as
a starting point. This design model is sufficiently detailed for this purpose, and includes,
in particular, adaptation mechanisms, which are essential for AmI system operating un-
der scarce and dynamic resource situations, cross-layer integration aspects, and abstract
resource models. We will show that it is possible to use the design model as a common
code base for the generation of simulation and production code. Furthermore, the same
compiler is used to generate this code. Both measures increase confidence that the re-
sults of the performance evaluation hold for the networked system in operation. To run
performance simulations of SDL design models, we have extended the network simulator
ns-2 [13], which is widely used for the simulation of computer networks. Performance
simulations of the Assisted Bicycle Trainer give evidence for the feasibility and usefulness
of this approach.

The rest of this paper is organized as follows. In Section 2, the AmI system Assisted
Bicycle Trainer (ABT), which has been engineered with our approach, is briefly intro-
duced. In Section 3.1, we elaborate on model-driven design with SDL, and illustrate all
steps by excerpts of the ABT specifcations. Model-driven implementation is addressed

3

in Section 3.2, featuring several new tools for the automatic generation of a prototype
system. In addition, an approach for model-driven perfomance simulations is presented
and applied in Section 3.3. The paper ends with a summary and an outlook (Section 4).

2 The Assisted Bicycle Trainer

To illustrate our model-driven engineer-

50

40

30

20

10

10 20 30 40 50 km/h

cyclist in lead

cyclist in lee

wheel resistance

ai
r
re
si
st
an
ce
 i
n
 N

Figure 1: Assisted bicycle training

ing approach, we will show excerpts from
the development of the Assisted Bicycle
Trainer (ABT), an ambient intelligence sys-
tem for the training of a group of cyclists
[7]. In a typical training scenario, a group
of up to 30 cyclists covers a distance of
up to 200 km, with a varying road pro-
file. For best training effects, each cy-
clist should ride with an individual aver-
age and maximum pulse rate. The pulse
rate depends on various parameters, in
particular on speed, head wind, road in-
cline, and physical condition of the cy-
clist.

The objective of the ABT is to improve
the training effect such that each cyclist
is as close to his individual target mean
pulse rate as possible, without exceeding
his maximum pulse rate. To achieve this
objective, the ABT dynamically collects
status data of each cyclist, and displays
a summary of these data to the human
trainer accompanying the group of cyclists
by car. Based on this information, the trainer may adjust training parameters, for in-
stance, by ordering the group to change speed, or by ordering a particular cyclist to take
the lead, exposing him to the headwind, while all others can exploit the slipstream and
thus need less pedal power. Orders of the trainer are shown on small displays attached
to each bicycle. The ABT is a self-organizing system, supporting, in particular, dynamic
group formation and mobility. Communication among cyclists and human trainer is via
wireless ad-hoc network.

4

3 Model-Driven Engineering with SDL

In this main section of the paper we present our model-driven engineering approach,
elaborating on process steps, tools, and our case study.

3.1 Model-Driven Design

In this section, we survey the early phases of the

CIM
(Use Cases)

PIM
(SDL)

PSM
(SDL)

Figure 2: Model-driven design

model-driven development process model, which are fully
in line with the OMG MDA (see Figure 2). The com-
putation independent model (CIM) is expressed by use
cases and informal text. Additionally, message sequence
diagrams may be added. For the specification of the
platform-independent and platform-specific models (PIM
and PSM), we use SDL [5], ITU-T’s Specification and
Description Language for distributed systems and com-
munication protocols. Over a period of more than 20
years, SDL has matured from a simple notation to de-
scribe asynchronously communicating finite state ma-
chines to a sophisticated formal specification language,
with graphical syntax, data types, structuring concepts,
support for reuse, and commercial tool environments.
Major application areas are telecommunication and au-
tomotive systems [10].

There is a strong relationship between SDL and UML 2.0. For instance, the same
concept of "system" is used, UML active classes are related to SDL process types, UML
active components are related to SDL process instances, and UML ports and connectors
are related to SDL gates and channels, respectively. This makes UML 2.0 an alternative
candidate for model-driven design of ambient intelligence systems. We have chosen SDL
because of our long-standing experience with the language, the early availability of com-
mercial tools, the available reuse support, and its formal semantics, and believe that it
is an excellent specification technique for model-driven design.

To support the process steps from CIM over PIM to PSM, transformation heuristics,
SDL design components and patterns can be used. Transformation heuristics capture
informal design guidelines, for instance, how to derive a partial PIM architecture from
a set of use cases, and how to refine the PIM architecture into a PSM architecture.
SDL design components are formally specified, ready-to-use solutions, which are selected
from a library (called package in SDL) and composed [3]. SDL design patterns [4] are
formalized, generic solutions to specific design problems, which are selected from a pat-
tern pool, adapted to their specific application context, and composed. An incremental
reuse-based development process model incorporating both SDL design components and

5

patterns and a detailed case study can be found in [3].

In Figures 3 through 7, the model-driven

update

cyclist display

distribute

cyclist status

Cyclist

TrainerCyclist
Display

Pulse Rate Sensors Speed

System

System

Figure 3: CIM: use case (excerpt)

design steps are illustrated by several ex-
cerpts from the ABT. Figure 3 shows an
excerpt of a use case describing function-
ality of the ABT, which is decomposed
into a cyclist and a trainer system asso-
ciated with the human cyclist and the hu-
man trainer, respectively. The cyclist sys-
tem collects sensor data (e.g., pulse rate,
speed), which are displayed to the human
cyclist (function update cyclist display).
The sensor data are transmitted to the
trainer system (function distribute cyclist
status). Commands of the human trainer (e.g., speed or position changes) are processed
and sent by the trainer system and displayed by the cyclist system (function update cy-
clist display).

SYSTEM AssistedBicycleTraining 1(1)

BLOCK Trainer(1): TrainerType BLOCK Cyclist(20): CyclistType

BLOCK: PIM_Medium

BLOCK TrainerApplication

BLOCK Communication_

BLOCK SpecificMiddleware

BLOCK CommonMiddleware

BLOCK CyclistApplication

BLOCK Communication_

BLOCK SpecificMiddleware

BLOCK Common_

Middleware

BLOCK Pulse

Middleware Middleware

SensorDriver

Figure 4: PIM: system architecture

Figure 4 is an SDL overview diagram, describing the upper layers of the PIM archi-
tecture. The diagram shows one trainer and 20 cyclists, decomposed into an application
layer, a communication middleware, and a common medium. The communication mid-
dleware is further decomposed into an application specific middleware, which supports,
for instance, the periodic transmission of cyclist stati to the trainer node, and the com-
mon middleware, which is responsible for routing, connection handling, and loss control.

6

The common medium is still platform-independent at this stage, but includes sufficient
detail to capture commonalities of real media, such as message loss and network topology.

Some parts of the PIM architecture can be derived from the CIM use cases, based on
informal transformation heuristics:

• The PIM is designed as a closed SDL system, incorporating both the system under
development and its environment.

• For every system of the use cases, introduce an SDL block on SDL system level.
For instance, the system Cyclist is represented by the block Cyclist in Figure 4.

• If there are interacting systems in the use case, add a communication middleware
and a common abstract medium.

• For each sensor and actuator, add a corresponding driver and stub, respectively.

Our incremental development process en-

DCL pulseRate Integer;

PROCESS SpecificMiddleware

statusInterval :=
CALL calcInterval

-

(connectivity,
messageRate)

resourceStatus
(connectivity,
messageRate)

DCL connectivity ConnectivitySet;

DCL messageRate Integer;
/* Assertion: msg/sec, > 0

SET(statusTimer,
now+statusInterval)

-

statusTimer

TIMER statusInterval := 5000;

active

OUTPUT
cyclistStatus

/* Assertion: msec

active

*

pulseRate

-

(pulseRate)

(pulseRate)

Figure 5: PIM: behavior excerpt (simplified)

sures that after each increment, the func-
tionality of the intermediate PIM can be
analysed, using the SDL simulator [12].
In addition, SDL design components and
patterns foster a reuse-based system de-
sign.

AmI systems operate under scarce and/or
dynamically varying resources. Further-
more, the application context may be sub-
ject to change. These characteristics re-
quire adaptive mechanisms that are to be
integrated across layers. For instance, the
number of cyclists that can deliver status
data to the trainer - an application param-
eter - may be derived from the current net-
work connectivity. This parameter can in
turn be determined by the communication
middleware and depends, among others,
on the routing protocol (see below). Net-
work connectivity may be used to upgrade
or downgrade the quality of service, de-
pending on the status message rate that is
currently supported by the network. For
good accuracy of the cyclist stati, the sta-
tus interval should be as short as possible. Based on the number of cyclists that are
within reach of the trainer, the interval can be calculated such that the available status

7

message rate is fully exploited.

Figure 5 shows a simplified excerpt of the behavior of the SDL process SpecificMiddleware,
which forms part of the SDL block of the same name. The excerpt consists of three tran-
sitions. The first transition records the current pulse rate of the cyclist, measured and
forwarded by a pulse sensor. The second transition takes the current resource status,
consisting of the current connectivity and the supported status message rate, and deter-
mines the current status interval. This interval is used by the third transition, which
outputs the current cyclist status to the trainer, to set the timer for the subsequent status
message. This simple adaptive algorithm ensures that the status is always sent at the
optimal rate, to avoid overloading the medium.

Another important design decision
SYSTEM Cyclist 1(1)

BLOCK CyclistApplication

BLOCK Communication_Middleware

network
WLAN_send

WLAN_recv

sensors

UART_recv

BLOCK SpecificMiddleware

BLOCK

Common_
BLOCK

PulseSensor_
Middleware Middleware

Figure 6: PSM: system architecture (excerpt)

is the choice of a suitable broadcast
algorithm as part of the common mid-
dleware. We have designed protocols
for local broadcast, and one for global
broadcast that is based on NXP/MPR
(Neighbor eXchange Protocol/Multi
Point Relay) [11], a sophisticated se-
lective flooding protocol, which ex-
amines all neighbours within 2 hops
distance and by the use of this infor-
mation calculates the minimum nec-
essary forwarding nodes. Depending
on the application context and the
network topology, a suitable broad-
cast protocol is selected and incorporated into the common middleware.

Once the PIM is completed, the transformation into the PSM is carried out, again
supported by SDL design components and patterns. In addition, the following transfor-
mation heuristics may be applied:

• Every SDL block that is to be mapped to a separate node is transformed into an
SDL system. SDL systems are deployment units, and can be compiled separately.

• Remove the logical medium, and add - for each communication technology - corre-
sponding signals to the environment. In addition, encoding and decoding routines
may be needed.

• Every driver/stub is replaced by an SDL block, specifying the hardware-specific
communication middleware, and a channel to the environment.

Following these heuristics, several transformations are performed in the ABT case
study:

8

• The SDL block Cyclist is transformed into a single SDL system Cyclist. This
system may later be installed on several nodes.

• The interface to the PIM_Medium is replaced by an interface to an existing com-
munication technology, as shown in Figure 6 for wireless LAN. As a consequence,
the behavior of the common middleware is augmented by encoding and decoding
routines.

• The SDL block PulseSensorDriver is replaced by a block PulseSensorMiddleware.
This means that the abstraction of the PIM, where pulse rates are determined by
some function pr, is refined into an external sensor application and an interface,
communicating with the external device via UART. The behavior before and after
the refinement is shown in Figure 7.

DCL pulseRate Integer;

PROCESS

*

NONE

-

DCL pulseRate Integer;

PROCESS

*

UART_recv

-

OUTPUT pulseRate
(decode(rawValue))

DCL rawValue Octet;

(rawValue)

PulseSensorDriver PulseSensorMiddleware

OUTPUT pulseRate
(pr(pulseRate))

Figure 7: PIM and PSM: behavior refinement (simplified)

3.2 Model-Driven Implementation

In Figure 8, the late phases of the model-driven development process model are shown.
Starting point is the PSM of the design phase (see Section 3.1), specified with SDL. From
SDL specifications, it is possible to generate code in two steps. In the first step, interme-
diate code in languages such as C or C++ can be compiled. This code can be executed
in different runtime environments (e.g., TAU Simulator [12]) and is therefore referred to
as Runtime-Independent Code (RIC) in Figure 8. The commercial TAU tool set [12] pro-
vides two SDL-to-C code generators. Cadvanced is a full-scale compiler, supporting most
constructs of SDL including dynamic creation of SDL processes and stateful procedures.

9

Cmicro implements a reduced subset of SDL and is targeted towards embedded systems.

To be executed on a specific target sys-
PSM

(SDL)

RIC
(C-Code)

SEnF
(C-Code)

SDL Engine
(C-Code)

RSC
(machine

code)

system
in

execution

Figure 8: Model-driven implementation

tem, the RIC is compiled to machine code
(Runtime-Specific Code (RSC), see Figure
8), using a platform-specific C-compiler.
To execute the RSC, an SDL engine for
the target system is required in addition.
The SDL engine comprises all functional-
ity that is necessary to initialize and exe-
cute the SDL system, e.g., to build up the
system structure, to select, schedule, and
execute fireable transitions, and to trans-
fer signals between SDL processes. SDL
engines for Windows and Unix platforms
are available from the TAU tool set.

To implement open SDL systems, i.e., systems interacting with their environment,
one or more interfaces satisfying the semantics of the SDL signalling mechanism are
needed. In general, the environment interface depends on a variety of aspects, such as
the type of interaction supported by the environment (message passing, method invo-
cation), the interaction formats, the operating system, and the communication service
(connection-oriented, connection-less, addressing). According to the PSM, SDL systems
may communicate via WLAN, Bluetooth, to name a few communication technologies, or
with input and output devices such as joysticks, respectively. When using the TAU tool
set, extensive manual, error-prone coding steps are required to supply these interfaces
(also called environment functions).

To avoid manual coding entirely, we have developed a generic, specification indepen-
dent environment package called SDL Environment Framework (SEnF) that is placed be-
tween the SDL system and the environment. The RIC of the open SDL system provides
an interface description of the environment in terms of signal lists. Each signal to the en-
vironment can be associated with one specific communication technology or input/output
device, for which our SDL Environment Framework automatically adds ready-to-use code
modules to the RIC. The code modules offer support for various operating systems and
hardware platforms. Thus, the combination of the SDL environment framework and
SDL engine close the semantic gap between the abstract model (SDL specification of
the PSM) and the implementation platform. Currently, SEnF covers the communication
technologies IEEE-802.11a/b/g (WLAN), IEEE-802.15.1 (Bluetooth), RS-232 (UART),
I2C, the input/output devices web cam, joystick, several sensors/actuators (via I2C),
LEDs, and the operating systems Windows NT/2000/XP, Linux.

Figure 9 shows an ABT system configuration with n cyclists and one trainer, commu-
nicating via WLAN 802.11b and operating under Linux and Windows, respectively. In

10

RSC

(Cyclist1)

SDL-Engine

(Linux)

RSC

(Trainer1)

SDL-Engine

(Windows)

RSC

(Cyclistn)

SDL-Engine

(Linux)

. . .

WLAN 802.11b

Figure 9: RSC: System configuration

addition, there is communication with the pulse sensor via UART, and with a PDA (see
below). Please note that the same RIC is used to compile the RSCs for different target
systems. Also, different operating systems are combined into one distributed system.

The prototype cyclist system is depicted in Figure 10. On the carrier, the embedded PC
Arbor Technology Em104P-i6023 (with WLAN stick Netgear MA-111, Bluetooth adapter
D-Link DBT-120, and UART interface), pulse rate receiver, and batteries (Lithium-
Polymer, 1500 mAh) are mounted. A PDA (Acer n-30) showing the current driver status
(e.g., pulse rate, actual speed) and the trainer orders (e.g., required speed, required
position changes) is attached to the handlebar. Communication between embedded PC
and PDA is via Bluetooth. Finally, the cyclist carries a pulse rate transmitter. The
trainer system (not shown here) is installed on a laptop, with a sophisticated graphical
interface to monitor and direct the training situation. So far, we have equipped 3 bicycles
with the cyclist system, as shown in the figure, and have successfully run several training
sessions.

Figure 10: Equipped bicycle

11

3.3 Model-Driven Performance Simulation

In several case studies, we have demon-
PSM

(SDL)

RIC
(C-Code)

SEnF
(C-Code)

SDL Engine
(C-Code)

RSC
(machine

code)

system
under

simulation

ns-2
(C-Code)

ns-2
(machine

code)

Figure 11: Model-driven performance simulation

strated that the PSM can also be used
as the starting point for model-driven
performance simulations. In Figure
11, the corresponding phases of the
process model are shown. Similar to
model-driven implementation, the RIC
and RSC are generated and combined
with the SDL Engine and the SDL
Environment Framework. In addition,
our network simulator ns+SDL [6] is
linked to the machine code, control-
ling the execution of the system under
simulation.

The original network simulator ns-2 [13], developed at the Information Sciences Insti-
tute of the University of Southern California, is a frequently used tool for the simulation of
computer networks, composed of transport, routing, and multicast protocols over wired
and wireless networks. ns-2 is an event-based simulator, consisting of the simulation
scheduler and a set of simulation components that can be configured in a flexible way,
yielding an executable simulation system. The simulation scheduler globally controls all
events during a simulation.

In [6], we have extended ns-2 to incorporate components that are generated from SDL
specifications, using the aforementioned code generator TAU Cadvanced. This enables
the developer to use code that is generated from the PSM for performance simulations
of networked systems. Our extension consists of several ns-2 simulation components
replacing predefined simulation functionalities, an adapted SDL Engine for the interac-
tion between ns-2 and an SDL system, and an environment package for SDL systems
that forms part of the SDL Environment Framework (SEnF). An important advantage
of our solution is that the same SDL-to-C code generator is used to compile the runtime-
independent code (RIC) from the same PSM. This increases confidence that the results
of the performance simulation hold for the system in execution.

Figure 12 shows an ABT simulation configuration with 20 cyclists and one trainer,
communicating via a simulated WLAN 802.11b wireless LAN with a range of about
200m. The cyclists are riding one behind the other, followed by the trainer. According
to the mobility model, positions and distances of cyclists changes during the ride. While
this has no consequences on connectivity between nodes in most cases, due to the wide
range of WLAN, there are two situations where the field and the network are partitioned.
At simulation times t1 = 100 sec and t2 = 530 sec, there is a gap of 200 m betweeen
nodes 9 and 10.

12

RSC

(Cyclist1)

SDL-Engine

(ns+SDL)

RSC

(Trainer1)

SDL-Engine

(ns+SDL)

RSC

(Cyclist20)

SDL-Engine

(ns-SDL)

. . .

ns+SDL (including WLAN 802.11b)

Figure 12: RSC: Simulation configuration

In our model-driven simulations, we have examined two system aspects. The first as-
pect concerns the comparison of local and global broadcast communication (see Figure
13). In the local broadcast case, the connectivity decreases to around 50%, when the
field is partitioned. The selective flooding protocol NXP/MPR improves this situation
substantially, providing for almost full connectivity during the entire simulation. Re-
duced connectivity only occurs for short periods of time, and is due to frame collisions
that prevent neighbors to receive the updated networks status.

0

5

10

15

20

25

0 200 400 600 800 1000

Time (s)

#
o

f
v

is
ib

le
n

o
d

e
s

global broadcast

local broadcast

Figure 13: Comparison of local and global (NXP/MPR) broadcast

The second aspect concerns the benefits of the algorithm to adapt the status message
rate to the current number of cyclists in the group. Simulation results are shown in Figure

13

14 for local broadcast communication. In the non-adaptive case, the maximum number
of cyclists in the group, i.e., 30 (see Section 2), is used to determine the (constant) status
message rate as supported by the network and observed by the trainer, which is 7 per
second. Since the actual group size is only 20, this leads to an actual status message rate
of 5 per second when all members of the group are within reach of the trainer. This rate
drops to 2 per second during periods of network partitioning.

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

Simulation Time (s)

#
re

c
e

iv
e

d
m

e
s

s
a

g
e

s
/

s
e

c
o

n
d

Non adaptive algorithm

Adaptive algorithm

Figure 14: Benefits of the status message rate adaptation (local broadcast)

In the adaptive case, the actual number of cyclists is determined and updated dynam-
ically. In the simulation, the actual number of cyclists in the group allows for 7 status
messages per second at the beginning. When the group is split, there is a short drop
down to 5 status messages per second before the updated number of cyclists leads to a
reduced status message interval of the cyclists within range of the trainer, and therefore
to the maximum rate of 7 per second. Interestingly, there is another drop when the field
of cyclists fuses. This can be explained by the fact that the previous field members reduce
their message rate immediately (due to the larger group size), but the new field members
start their status message transmission only after their status interval has expired for the
first time.

Since the performance simulation is model-based, it is straightforward to replace the
WLAN simulation component by other technologies, say, ZigBeeTM or Bluetooth, and
to study the above system aspects. Also, it is straightforward to replace the broadcast
protocol, or other communication components, or to modify the adaptation algorithm.
For this, it is important that the platform-independent model is sufficiently detailed. We
have shown that this is feasible even in the context of ambient intelligence systems, which
are constrained by resources and environmental conditions.

14

4 Summary and Outlook

In this paper, we have built on and refined the idea of OMG’s MDA to place the abstract,
formal system model in the center of the development activity, using ITU-T’s SDL as
design language. We have presented a comprehensive, holistic model-driven approach
that covers the entire development trajectory and incorporates performance simulation:

• With our tool chain, we replace manual coding steps entirely. Using our generic,
specification-independent environment package SDL Environment Framework, we
can generate interface routines for different combinations of operating systems (e.g.,
Linux, Windows), communication technologies (e.g., WLAN, UART, Bluetooth)
and IO devices (e.g., LEDs, web cams, joysticks).

• We have demonstrated that the platform-specific model can be used as a common
code base for the generation of simulation and production code. This is an im-
portant step forward, as it is no longer necessary to have a separate, hand-coded
simulation system that needs to be kept consistent with the system model. Further-
more, the same compiler has been used to generate the simulation and production
code. Both measures increase confidence that the results of the performance eval-
uation hold for the networked system in operation.

• To provide evidence for the feasibility and usefulness of our approach, we have
conducted a substantial case study of an ambient intelligence system, the Assisted
Bicycle Trainer. Here, the focus has been on the peculiarities of AmI systems,
in particular, scarce and dynamic resource situations, adaptivity, and cross-layer
integration. These aspects have already been incorporated in the early development
phases, and have enabled a performance assessment that was based on the platform-
specific model, using ns+SDL, an extension of ns-2 that we have developed for this
purpose.

Future work in several directions can be envisaged:

• The SDL Environment Framework (SEnF) can be extended to support further
hardware platforms, communication technologies, and IO devices. We are currently
working on interface routines for MICAz [2], a tiny, wireless measurement system
communicating via IEEE 802.15.4 ZigBeeTM, in order to replace the embedded PC
of the Assisted Bicycle Trainer.

• Further case studies will be conducted to evaluate, assess, and improve our model-
driven approach. This concerns the investigation of sophisticated adaptive algo-
rithms, cross-layer integration of quality-of-service functionality, as well as the
model-driven development of AmI systems for assisted living. Further work is

15

foreseen to improve the Assisted Bicycle Trainer, by taking additional cyclist data
into account, and by cooperating with cyclist training teams and sports physicians.

5 Acknowledgements

We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft
(DFG), and of the Interdiscplinary Research Center "Ambient Intelligence" at the Uni-
versity of Kaiserslautern.

References

[1] M. Book, S. Beydeda, and V. Gruhn. Model-driven Software Development. Springer,
2005.

[2] Crossbow. Micaz wireless measurement system. http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf.

[3] I. Fliege, A. Geraldy, R. Gotzhein, T. Kuhn, and C. Webel. Developing Safety-
Critical Real-Time Systems with SDL Design Patterns and Components. Computer
Networks, Elsevier, 2005. (forthcoming).

[4] R. Gotzhein. Consolidating and Applying the SDL-Pattern Approach: A Detailed
Case Study. Information and Software Technology, 45:727–741, 2003.

[5] International Telecommunications Union. Specification and Description Language
(SDL). ITU-T Recommendation Z.100, August 2002.

[6] T. Kuhn, A. Geraldy, R. Gotzhein, and F. Rothländer. ns+SDL - The Network
Simulator for SDL Systems. In A. Prinz, R. Reed, and J. Reed, editors, SDL 2005,
Lecture Notes in Computer Science (LNCS) 3530, pages 103–116. Springer, 2005.

[7] L. Litz, N. Wehn, and B. Schürmann. Research Center "Ambient Intelligence" at
the University of Kaiserslautern. In VDE Kongress 2004, volume 1, pages 19–24,
Berlin/Germany, 2004. VDE Verlag, ISBN 3-8007-28273.

[8] J. Miller and J. Mukerji, editors. MDA Guide Version 1.0.1. OMG, 2003.

[9] Object Management Group. Unified Modeling Language 2.0 Infrastucture Final
Adopted Specification. http://www.omg.org/cgi-bin/doc?ptc/2003-09-15, 2004.

[10] E. Sherratt, editor. Telecommunications and beyond: The Broader Applicability of
SDL and MSC. Lecture Notes in Computer Science (LNCS) 2599. Springer, 2003.

[11] T. Sonntag. Optimized flooding for a voice radio application as example. (in ger-
man), project thesis, University of Kaiserslautern, Computer Science Department,
2005.

16

[12] Telelogic AB. Telelogic Tau Generation 1. http://www.telelogic.com/products/
tau/index.cfm.

[13] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns. Information Sciences
Institute, University of Southern California.

17

