AG VERNETZTE SYSTEME
FACHBEREICH INFORMATIK
TECHNISCHE UNIVERSITAT

KAISERSLAUTERN

MASTER-THESIS

QOS MULTICAST ROUTING IN
PARTIALLY MOBILE, TDMA-BASED
NETWORKS

Johann Gebhardt

17.03.2015

QoS Multicast Routing in Partially
Mobile, TDMA-based Networks

Master-Thesis

Arbeitsgruppe Vernetzte Systeme
Fachbereich Informatik
Technische Universitat Kaiserslautern

Johann Gebhardt

Tag der Ausgabe : 18.08.2014
Tag der Abgabe : 17.03.2015

Erstgutachter . Prof. Dr. Reinhard Gotzhein
Zweitgutachter : Dipl.-Inf. Anuschka Igel

Ich erklare hiermit, die vorliegende Masterarbeit selbstindig verfasst zu haben.
Die verwendeten Quellen und Hilfsmittel sind im Text kenntlich gemacht und im
Literaturverzeichnis vollstandig aufgefiihrt.

Kaiserslautern, den 17.03.2015

(Johann Gebhardt)

Abstract

Wireless communication systems play an increasingly important role in the modern
world. Among other things, they begin to replace wired systems in manufacturing
scenarios. Wireless networks offer a lot of additional challenges for a system designer,
e.g., the interference between transmitting and receiving devices. Due to the limited
communication range (which is usually smaller than the interference range) and
varying signal quality, nodes usually cannot communicate directly with each other.

An integral part of every communication system is the routing algorithm, which
is responsible for the creation of paths along which messages can be forwarded from
a source to a destination. In mobile networks the mobility of devices adds further
challenges to the system, e.g., because proactive discovery of routes which include
mobile nodes is usually not feasible.

In this thesis, a routing protocol for a partially mobile network is developed. The
TDMA-based network is the (already existing) communication system designed for
the production line of a factory. The algorithm finds routes between different types
of nodes, including mobile nodes, and creates a slot reservation schedule without
inter-system interference. An acknowledgement mechanism is used to deal with
packet loss. The algorithm supports Quality of Service requirements in the form of a
minimum bandwidth of one time slot per super slot. Furthermore, it supports several
optimization objectives (delay minimization and slot utilization). The algorithm
uses multicast trees and local multicasting to reach several destinations at the same
time.

As a proof of concept, a simulation for the important parts of the algorithm was
implemented and used for its evaluation.

Zusammenfassung

Drahtlose Kommunikationssysteme spielen heutzutage eine zunehmend wichtige
Rolle; unter anderem ersetzten sie vorhandene drahtgebundene Systeme im Pro-
duktionsbereich von Fabrikanlagen. Drahtlose Netzwerke fiihren zu neuen Her-
ausforderungen fiir Systementwickler, wie z.B. Interferenzen zwischen Sende- und
Empfangsgeriten. Aufgrund der eingeschrinkte Kommunikationsreichweite (welche
meistens kleiner ist als die Interferenzreichweite) und der schwankenden Signalqual-
itdt ist es in der Regel nicht moglich, Nachrichten von einer Quelle direkt zu einem
Ziel zu senden.

Aus diesem Grund ist ein Routingalgorithmus ein integraler Bestandteil jedes
Kommunikationssystems. Dieser ist fiir das Auffinden von Pfaden zwischen Quelle
und Ziel verantwortlich. In mobilen Netzwerken wird dieser Prozess noch durch die
Mobilitdt der Gerdte verkompliziert. Beispielsweise ist es meistens nicht mdglich,
proaktiv Routen, die mobile Knoten beinhalten, zu finden.

In der vorliegenden Arbeit wurde ein Routingalgorithmus fiir ein teilweise mo-
biles Netzwerk entwickelt. Das auf TDMA basierende Netzwerk wird in dem (bereits
existierenden) Kommunikationssystem einer Produktionsanlage verwendet. Der Al-
gorithmus ist in der Lage, Routen zwischen Knoten verschiedener Typen, inklusive
mobiler Knoten, zu finden. Zusétzlich wird ein interferenzfreier Slotschedule erstellt.
Zur Behandelung von Paketverlusten wird ein ACK-Mechanismus genutzt. Quality
of Service-Anforderungen werden von dem Algorithmus in Form einer minimalen
Bandbreite von einem Slot per Superslot ebenso unterstiitzt. Zusétzlich werden ver-
schiedene Optimierungsziele geboten (Latenzminimierung und eine moglichst gute
Slotausnutzung). Der Algorithmus nutzt Multicastbdume und lokalen Multicast, um
mehrere Empfianger gleichzeitig zu erreichen.

Um das Konzept zu evaluieren wurden fiir die wichtigen Teile des Algorithmus
eine Simulation entwickelt und zu Priifung genutzt.

Contents

[Abstract] i
[Zusammenfassung]| ii
1 __Introductionl 1
2__Problem Statement] 3
2.1 Network Modell o oo 4
[2.2 Time Division Multiple Access| 6
2.2.1 Interference-free Communicationl 8

[2.2.2 Interference and Acknowledgements| 10

[2.2.3 "Timeslot Assignment for Routes| 11

2.3 Quality of Service| oo 12
[2.4 Node Types and Network Topologyl 13
[2.4.1 Stationary Nodes| 13

2.42 Mobile Nodesl 14

2.5 Related Workl 15
[2.6 Objective of this Thesis| 16
[2.6.1 Sub Objectives|o 16

[Centralized Multicast Routing| 19
[3.1 Assessment criteria for the Route Discovery| 21
[3.1.1 Number of Hops| 21

[3.1.2 Length of Paths|. 21
BI3TCostlo 21

B2 Common Functions 22
[3.3 Route Request Phase| 22
[3.3.1 Packet Types| 23

8.3.2 Protocoll 24

3.4 Route Confirm Phasel 27
[3.5 Route Discovery|. 28
[3.5.1 Creating a New Stationary Multicast Iree] 29

[3.5.2 Adding Destinations to Existing Trees| 32

[3.5.3 Creating a Mobile Multicast treel 34

[3.5.3.1 Route Discovery with a Mobile Node as Destination| 35
[3.5.3.2 Route Discovery with a Mobile Node as Source] . . . 36

v Contents

[4 Centralized Timeslot Assignments| 41
[4.1 Slot Types 41
4.2 Local Multicastl o o 42
4.3 Mobile Nodes| o 43
4.4 Assessment Criteria for the Schedulel 44
[4.5 ‘Timeslot Assignments for lrees| 44

[4o.1 Definitions|o o 45
[4.5.2 Scheduling Algorithm — Creating a New ‘Ireel. 45
[4.5.2.1 Minimizing the Delay| 46
[4.5.2.2 Maximizing the Utilization| 49
[4.5.3 Scheduling Algorithm — Additions| 54
[4.5.3.1 Adding a Destination to a [ree| 54
[4.5.3.2 Scheduling Including Mobile Nodes| 55
[4.5.3.3 Scheduling Multiple Trees| 56

6_Evaluation 59
[>.1 Evaluation Setup| 59
b.2 FEvaluation Scenarioslo 60
0.3 General Performancel 0oL 61

[5.3.1 Delay and Utilization|. 62
[5.3.2 Lowering the Number of Micro Slots| 64
[5.3.3 Scheduling Multiple Trees| 65
b.4 Mobile Nodes as Destinationl 66
h.5 Mobile Nodes as Source of a Ireel 69
[>.6 Examining an Example Ireelo 71

6 Conclusion and Future Workl 79

Chapter 1

Introduction

Wireless communication systems play an increasingly important role in the modern
world. Today, they can be found nearly everywhere. Many devices, like mobile
phones or tablets, only offer very limited support for wired communication. Also,
wireless solutions begin to replace wired systems in other application contexts, e.g.,
in private home networks (W-LAN), or even communication systems in factories.

From a user’s point of view, wireless systems offer a lot of advantages. E.g., it
is often simpler to connect a device to others in wireless systems. Not having to
deal with cable management and the freedom to move a device around at will is
very convenient. Furthermore, wireless communication enables a connection to a
network in places where a wired connection is not possible or at least impractical,
e.g., in large outdoor areas.

From a system designer’s point of view, wireless systems lead to additional chal-
lenges compared to wired ones. Wireless communication is always broadcasted in
a certain area (the communication range) and generally interferes with other com-
munication in an even larger area (the interference range). It is not possible to
target a single receiver without disrupting other wireless devices in range. However,
it is possible to influence the size of the communication and interference areas by
reducing the transmission power. Also, directional antennas can be used to target
a specific area instead of transmitting in all directions [27].

Furthermore, wireless signals are influenced by obstacles in their path. Non-
moving obstacles can be taken into account while designing the system, but mobile
obstacles, e.g., people moving around, cannot be predicted perfectly. Even if the
mobile obstacles can be predicted perfectly, calculating their influence on the system
is very complicated. Additionally, other wireless systems or machines can interfere
with the communication of the planned system.

In practice, this leads to changing signal quality at the receiver, depending on the
circumstances. It is also possible that signals are lost completely. The important
point is that the wireless medium is generally unreliable. Therefore, according to
[10], giving hard guarantees to fulfill some requirements is hard or even impossi-
ble. Even statistical guarantees may not always be possible in networks with high
mobility [20].

At a first glance, an imaginable advantage of a wireless system could be, that
it is easier to communicate with specific other devices. In theory, messages can be
sent directly from the sender to the intended receiver. In wired systems, this would

2 1. Introduction

require that the sender and receiver are directly connected to each other. Unfortu-
nately, due to the limited communication range and the varying signal quality, this
is not often possible in wireless systems. Therefore, messages usually have to be
forwarded by different devices until the destination is reached.

This problem becomes more difficult, when a system contains mobile devices,
which are connected to different parts of the network at different times. So, in this
case, choosing a static path along which a message can be forwarded to reach a
destination, is not possible.

Designing communication systems that can deal with all the problems of wireless
communication is a major challenge. Often, some of the problems are ignored, which
means that presented solutions are not always convincing [I7]. For example, an often
ignored problem is that the range in which a transmission interferes with other
communications is greater than the range in which it can be successfully received.
Unfortunately, some simplifying assumptions usually have to be made to design a
practical wireless system, e.g., the Single Network Property [14], which states that
there are no other networks or protocols that interfere with the system.

In this thesis, a routing algorithm for a specific communication system is devel-

oped. The (already existing) communication system is designed for the production
line of a factory. The factory contains stationary devices, such as sensors, actuators
and general computation devices, as well as mobile devices, e.g., mobile robots. The
stationary devices form a permanent, unchanging topology. The mobile devices, on
the other hand, can move around and are not part of the fixed topology. Some
information about the movement of the mobile nodes is known, for example the
general area in which they can move as well as their velocity. This scenario and the
organization of the communication system is further described in [19].
The developed routing algorithm is able to create routes from each device to all
other devices and organizes the communication so that no inter-system interference
is possible. It supports multicast routing, i.e., sending from one source to several
destinations, and Quality of Service requirements in the form of a minimum band-
width. The algorithm can either minimize the end-to-end delay of transmissions
or maximize the chance of finding a feasible schedule for a route. Furthermore, an
acknowledgement system is used to reduce the problems of the unreliability of the
medium. As a proof of concept, a simulation was implemented and used to evaluate
the important parts of the algorithm.

The initial problem, additional assumptions and related work will be further dis-
cussed in Chapter The algorithm is split into two parts, route discovery and
scheduling of transmissions, which will be presented in Chapters 3| and [4l An eval-
uation of the algorithm can be found in Chapter |5 and the thesis is concluded in
Chapter [6]

Chapter 2

Problem Statement

The factory, as described in Chapter [I, can be modeled as a network of computa-
tion devices, where all machines and robots are modeled as communicating nodes.
The different devices can be grouped into different types, which leads to a network
consisting of a number of stationary nodes of miscellaneous types and (one or) a few
mobile nodes.

The network is organized as a Service Architecture (SA). In a service architecture,
the functionality of the network is modeled as a collection of services. Nodes can
create and publish a service or a number of services, that contain their functions.
When a nodes needs a service of another node, it can subscribe to it. As soon
as the communication between the providing and using nodes is established, the
subscribing node receives the results of the offered service.

For example, a sensor can offer its measurements by offering a service which
propagates its sensor values. A computation device can supply a data analysis
function by creating and offering a service which performs the analysis. If some node
needs the processed sensor values, it can subscribe to the service of the computation
device. The computation device has to subscribe to the sensor value provider, so
that it can process the values and send the results to the node needing them.

A node that subscribes to a service usually continues to use the service for some
time. This means that the connection between the service provider and the user is
maintained until the service user unsubscribes. Another important property is that
often several users subscribe to a single service. It is not unusual that several nodes
need the same information or results of the same computations.

In a network model for the described scenario, the nodes obviously need to com-
municate with each other. However, due to the limited transmission range of the
wireless medium, they often cannot communicate directly. Instead, transmissions
have to be forwarded through several other nodes. The process of finding a path of
nodes from one source to one or more destinations is called routing. The objective
of this thesis is to develop a routing algorithm for the described scenario.

The algorithm needs to be able to find routes between all stationary and mobile
devices. In addition to finding the routes, it needs to be able to organize interference-
free communication along these routes. In this chapter, the problem is further
specified and additional assumptions are introduced.

4 2. Problem Statement

Figure 2.1: An example network showing the communication and interference range
of node a and an example path p.

2.1 Network Model

In the following, the network is modeled as graph G = (V, E,I) where V is the
set of vertices and F and [are sets of edges. Every vertex v € V represents
a node of the network. Every node is associated with a transmission range and
an interference range. The transmission range - or communication range - is the
maximum range, in which transmissions of a node can be received correctly. The
interference range, on the other hand, is the range in which a sending node interferes
with the communication of other nodes. Sometimes, nodes are also associated with a
sensing range, which is the range in which another node can sense their transmissions.
Here, the sensing range will be ignored, as it is not needed for the routing algorithm.

R; denotes all (other) nodes in the transmission range of a node i € V and [;
denotes all (other) nodes in the interference range of a node ¢ € V.

Definition 2.1 The following relations hold:
e R, = {a € Vl]a is in communication range of i}
e [, = {a € Vla is in interference range of i}

For all nodes 7, an edge (i,u) has to be added to the set E of edges for all nodes
u € R;. Furthermore, for all nodes j, an edge (7,v) has to be added to the set [
of edges for all nodes v € I;. In all figures in this thesis, the set E is represented
with a continuous line and set [is represented with a dashed line, unless specified
differently. The interference range is at least as big as the communication range of
a node, therefore R; C I; holds for all nodes 7 [14].

All graphs in this thesis are undirected. In an undirected graph, edges have
no direction. Therefore, a link is defined as a pair [a,b] of nodes that are con-

2.1. Network Model 5

Figure 2.2: An example tree with three paths p; = (f,e,a), p2 = (a,b,¢,d),

nected, meaning that a € R, and b € R,. In practice, wireless links are not always
bidirectional, as shown in [17].

Sometimes it is assumed that the interference range is the same as the commu-
nication range, which means that &/ == I holds and the network is represented as
a graph G = (V,E). While this is not a realistic assumption, it is useful to explain
the principles of an algorithm in a small example. Another common assumption is
that the interference range of a node contains all nodes in the communication range
of its neighbors. In that case the following relation holds:

o [, ={acV|FyeV:ye R, ANz €R,}

If this is the case, the interference range will not always be displayed in figures in
this thesis.

All nodes are associated with a unique id. Furthermore, the nodes can have
different types, with the default being no specific type for all normal nodes. Other
important types will be introduced later.

A path p is defined as an ordered sequence of nodes (a, b, c,. .., d, e), where each
node forms a link with the directly following node of the path. This means that
be R,, cE€ Ry,...,and e € R4 holds for all nodes in p.

For convenience, it is assumed that it is possible to address the same path p =
{a,b,c,d) as a sequence of nodes (a,b,c,d) or a sequence of links ([a,b], [b,c|,[c,d]).
Hence, a € p refers to a node a that is part of path p and [a,b] € p refers to a link
[a, b] of path p. The length |p| of path is defined as the number of links in the path.

Figure displays an example network, showing the communication range R,
and interference range I, of node a, and an example path p = (a, b, ¢, d).

A tree mTree is an sequence of paths (py,ps,...,ps), that can be interpreted as
a tree from a single source to multiple, different destinations. This means that p; is
a path from the source to the destination d;. On the other hand, ps is a path from

6 2. Problem Statement

management slots

[

dynamic slots

reservation

e

microslot

superslot

Figure 2.3: Example TDMA slotting with four management slots, eight dynamic
slots and one reserved slot.

one of the nodes from p; to the destination ds, while p3 is a path from one of the
nodes from either p; or ps to the destination d3 and so on.... Figure shows an
example network with a tree consisting of three paths py = (f, e, a), p2 = (a,b, ¢, d),
ps = (b, g,h). Note that ps is connected to the tree via node b, so the route from
the source f to the destination h is (f, e, a,b, g, h) instead of just ps.

2.2 Time Division Multiple Access

The network uses a Time Division Multiple Access [26] (TDMA) strategy for medium
access. In the TDMA model, nodes can only transmit or receive when the transmis-
sion does not interfere with other transmissions in the interference range of partic-
ipating nodes. This is achieved by organizing time into slots of a fixed length. In
every slot, a node can either transmit, receive or do nothing. To achieve collision
free communication, all transmissions have to be scheduled into these time slots (see
Section [2.2.1)).

The slots are furthermore grouped into micro-, macro- and superslots. Micro slots
are the shortest slots. Macro slots contain several micro slots while superslots are a
collection of macro slots.

For TDMA to be possible, the network needs to be synchronized, so that all
nodes register the start and end of time slots at the same time. For this, tick
synchronization is necessary. Proper tick synchronization ensures that all nodes
have a synchronized reference tick, with which they can calculate the timings of
subsequent time slots. In this thesis, it is assumed that Black Burst Synchronization
(BBS) [13] is used. BBS uses periodic tick frames to achieve tick synchronization
with a deterministic tick offset. The tick offset is the maximum time that the clocks
of two nodes can differ in a network. There exist two different versions — a centralized

2.2. Time Division Multiple Access 7

and a decentralized one — of BBS. Here, the centralized version, which relies on a
master node to handle the synchronization, is used.

The synchronization happens at the beginning of every macro slot. The schedul-
ing algorithm will reserve micro slots for transmitting or receiving frames. The
reservations, unless canceled, are the same in every super slot. This means the
communications are periodic, which fits the service architecture of the network.

Superslots are groups of macro slots, which can be used if the periods of the macro
slots are too short. The macro slots have a maximum length, because BBS needs
to re-synchronize the network frequently, otherwise the tick offset would become
too large [13]. As the macro slots are only important for synchronization, which
is not part of the routing algorithm, they will be ignored in the following. The
length of super slots will vary, depending on the examples used. The length of the
micro slots is fixed to be long enough for sending one data frame and up to three
acknowledgments in a single slot.

Additionally, there is a difference between management and dynamic slots.
Every node is assigned a fixed management slot, in which it has exclusive sending
rights. These slots are used to guarantee a collision-free transmission of management
traffic, such as route requests. The exact distribution of the management slots is
not important in this thesis and therefore left open.

Dynamic slots on the other hand are used to schedule the general traffic. The
slots are assigned to the relevant nodes by the routing algorithm. The reservations
are kept until the route is canceled.

Figure shows an example slot distribution. Here, one super slot contains
twelve micro slots and is further split into four management slots, which implies
that there are four nodes, and 8 dynamic slots. One slot (slot four of the dynamic
slots) is reserved for a transmission in all super slots. The macro slots are not shown.

Space-Division Multiple Access

A possible way of avoiding conflicts is to allow only a single node to transmit in every
slot. Aslong as there is only one transmitting node in the whole network at any time,
collision-free communication is guaranteed under the assumptions that there are no
other networks or protocols which interfere with the communication (Single Network
Property [14]). However, as nodes have a known maximum interference range, it is
possible to schedule multiple transmissions in the same slot, if they do not interfere
with each other. This is called Space-Division Multiple Access (SDMA).

8 2. Problem Statement

®
@
=

-
-

~
~

range ofa, b, ¢, d

Figure 2.4: An illustration of the hidden station problem.

-
. ~~

Samm
- ~-
~

-

rangeofa, b, ¢, d

Figure 2.5: An illustration of the exposed station problem.

2.2.1 Interference-free Communication

To achieve interference-free communication in the TDMA model, several problems
have to be considered while creating the schedule. First, wireless nodes can usually
only either send or receive at any point in time.

Furthermore, transmissions interfere with other transmissions in a certain area
(the interference range). If a node is transmitting in a time slot, no other node in its
interference range can receive in this slot. This leads to the hidden station problem,
as shown in Figure [2.4] where node ¢ must not send to node d as long as a is sending,
because c is in the interference range of node b. In the figure it is assumed that the
interference range is the same as the communication range.

Another common situation is referred to as the exposed station problem. The
exposed station problem states that two nodes can send at the same time even if
they are in each other’s interference range, as long as their intended receivers are not
in the other node’s interference range, as illustrated in Figure These problems

2.2. Time Division Multiple Access 9

are often addressed with a Request To Send / Clear To Send (RTS/CTS) mechanism,
but can also be avoided by taking them into account while creating the schedule.

Similar to [31], this leads to the following property, which has to be fulfilled in a
conflict free schedule.

Property 1 Sending from node a to b in timeslot t is interference-free iff
e o and b do not send / receive in t
e (all) nodes in interference range of a do not receive in t
e (all) nodes in interference range of b do not send in t

If T X, is defined as the set of slots scheduled for transmissions from node a and
RX, the set of slots scheduled for receiving in node a then slot t can be used to send
from a to b if:

t §é TXa,t §é TXbﬂf §é RXa,t §é RXb and
Ve eI, :t ¢ RX, as well as
‘v’yEIb:t¢TXy.

Figure 2.6: An illustration of the interference problem.

[Slot: [0 |1 |2 |
node a: Xps | Xy

node b: | R, X,

node c: | X,5 | Ry
node d: | x5 | Xps | Xps
node e: | x,
node f: | x4 | X, | X
node g: Xs | Xps
node h: Xs | Re

Table 2.1: A feasible schedule according to Property 1.

Figure [2.6|and Table [2.1] display an example schedule for a network. In the table,
and in all following tables, the annotation 5, indicates that the corresponding node

10 2. Problem Statement

sends from itself to node b in that slot and R, indicates that the current node is
scheduled to receive from node a in this slot. When a node is blocked from sending,
receiving or both, the appropriate entry of the table is marked as x,, x, or x,,. In
this example, node a wants to send a message to node h along the path (a,b,c, h).
Node a is scheduled to send in slot 0, which means that node b needs to be scheduled
to receive in the same slot. All other interference neighbors of a are blocked from
receiving in slot 0 (nodes ¢, e and f) and all nodes in the interference range of b
(nodes ¢, d and f) are blocked from sending. Slot 1 is scheduled in a comparable
manner. Node b and ¢ send and receive, while nodes a, d and f are blocked from
receiving and nodes a, d, g and h are blocked from sending. Node f is only blocked
from receiving in slot 1, while node e is still free, so sending from node f to e in slot
1 would still be possible. This is an example of the exposed station problem. Slot 2
is scheduled in the same way as slots 0 and 1.

2.2.2 Interference and Acknowledgements

Sometimes it is necessary to use TDMA together with an acknowledgement mecha-
nism, because even with interference-free communication, transmission failures can
happen. To avoid problems, nodes send an acknowledgment (ACK) message back
to the sender after every received message. This happens in the same timeslot in
which the original message has been sent. From the point of view of the interference
problem, this means that nodes act as sender and receiver in every used timeslot.
This changes the previous property to the following:

Property 2 Sending from node a to b in timeslot t is interference-free iff
e o and b do not send / receive in t
e (all) nodes in interference range of a and b do not send / receive in t

This is identical to Property 1 applied two times, with both nodes acting as sender
and receiver in every timeslot.

[Slot: [0 [1 [2]

node a: X | x
node b: | R, X
node c: | x R,
node d: | x X | x
node e: | x

node f: | x X | x
node g: X | X
node h: x | R,

Table 2.2: A feasible schedule according to Property 2.

Table shows a feasible schedule for the example in Figure [2.6] according to
Property 2. Distinguishing between slots blocked for sending resp. receiving is not
necessary anymore, because slots are either blocked completely or not at all. The

2.2. Time Division Multiple Access 11

Figure 2.7: A slightly different illustration of the interference problem.

[Slot: [0 |1 [2 |[Slot: [0 [1 |2 |

node a: X | x node a: X
node b: | R, X node b: R,
node ¢: | x R, node ¢: | x X R,
node d: | x X | x noded: | x |x |x
node e: | x nodee: | x | X

node f: | x X | x node f: | x X X
node g: X | X node g: X
node h: | R, | x | R. || node h: | R, X

Table 2.3: A feasible (1.) and an incomplete schedule (r.) according to Property 2.

scheduling is similar to the last example. But here it would not be possible to
send from node f to node e in slot 1 as previously, because node f is blocked from
sending and receiving in slot 1. This shows one of the disadvantages of using the
acknowledgement mechanism.

It is assumed that, if several nodes correctly receive the same message, the re-
sulting ACKs are scheduled to be sent in a conflict free manner in the same timeslot
(see Section . This is possible because nodes will know how many nodes need to
receive their message, so that the ACKs from the different receivers can be scheduled
to be sent at different times (still within the original timeslot)(see Section [4.2). To
be more detailed, it is assumed that up to three acknowledgments fit in the same
timeslot together with the original message. If more than three nodes need to be
reached with one transmission, the data has to be sent several times. How exactly
the ACKs are scheduled is out of scope for this thesis.

2.2.3 Timeslot Assignment for Routes

Figure shows a slightly different example of the scheduling problem. In this
scenario, two nodes (a and g) want to send to the same destination h. Table[2.3[shows
two different schedules for this example. The left one shows a feasible schedule, in
which nodes a and ¢ transmit in the same slot, which is possible without interference
according to Property 2. The right table shows the results of a different scheduling

12 2. Problem Statement

strategy, in which no feasible schedule is found. Here, nodes a and g are scheduled
for different time slots, i.e., there is no free slot left for node ¢. In a small example
like this, it may be easy to find a feasible schedule, but in bigger examples this is
not necessarily the case. A possible scheduling strategy could be to start with the
shortest path, and then prefer completely unused slots while scheduling the links
step by step, which in this case leads to a failed schedule.

Assigning timeslots, according to the above properties, for whole routes is an NP-
hard problem [31]. Therefore, heuristics which try to find a conflict-free schedule
are necessary. This will be presented in Chapter [4

2.3 Quality of Service

Communications in a network usually have to fulfill certain characteristics. These
characteristics can be formally specified as the Quality of Service (QoS) param-
eters of the network.

Section [2.2.1] explained that transmissions have to be scheduled into time slots
to achieve conflict-free communication. In the TDMA model every transmission has
a bandwidth requirement of a number of micro slots needed for a transmission in
every super slot. In this case, the bandwidth is a QoS parameter. In other medium
access strategies, the bandwidth requirement will often be given in bits per second
or another suitable measure of the throughput needed for a transmission.

In a SA, it is possible that different services have different bandwidth require-
ments, e.g., because they have a varying amount of data to send. This could be
the case when a service only contains the result of some calculation, (usually a sin-
gle value to be sent) while another service publishes a whole data set (e.g., sensor
values). To simplify the requirements, it is assumed that every service has a band-
width requirement of one slot, but changing it to a variable number of slots should
be possible without changing the fundamental principles of the presented routing
algorithm.

The delay for sending from a source to a destination is another useful QoS pa-
rameter. The required delay is usually given as unit of time. In TDMA this can be
a number of slots, which can be used as a time unit due to their fixed length. The
delay is important whenever a task is time critical. In a SA this can depend on the
service. A maximum delay is often needed in safety-relevant tasks. For example,
a procedure that stops actuators needs to be completed as fast as possible in the
case of an emergency. On the other hand, a service that simply outputs the results
of some functions, does not need to be completed in a specific time. In the specific
scenario the delay of transmissions is a concern. There will be methods which try to
reduce the delay as much as possible, during routing and scheduling, but a specific
delay requirement will not be given.

There are of course other QoS parameters in other scenarios, e.g, in a wireless
sensor network, with battery powered sensors, the energy consumption of nodes is
often important. But in this thesis, only bandwidth and delay will be considered.

2.4. Node Types and Network Topology 13

Figure 2.8: An example clustering, with nodes b, g and i as cluster heads and nodes
h,f and c as gateways.

2.4 Node Types and Network Topology

The network is assumed to be clustered. From a clustering point of view there are
three different node types: cluster heads, followers and gateways. Every follower and
gateway node is in 1-hop distance (communication range) to a cluster head. Cluster
heads have a maximum distance of 8 hops to another cluster head. Gateways are
nodes that connect two different clusters to each other. In other words, the network
is organized as a 3-hop connected 1-hop dominating set.

Figure [2.8 shows a 3-hop connected 1-hop dominating set. More details on the
clustering algorithm can be found in [19].

For the developed routing algorithm the clustering is irrelevant. Therefore, these
clustering node types will mostly be ignored in the rest of the thesis. More important
is the distinction between stationary and mobile nodes.

2.4.1 Stationary Nodes

Stationary nodes, as the name suggests, do not move and form a permanently fixed
topology. On a functional level, stationary nodes can be grouped into Full Functional
Nodes (FFN) and Reduced Functional Nodes (RFN). FFNs offer a higher degree of
functionality compared to RFNs. Among other things, FFNs can act as cluster
heads and gateways from a clustering point of view. RFNs, on the other hand, can
only act as followers.

As mentioned in the introduction of the current chapter, the network uses a
service architecture. Both FFNs and RFNs can act as service providers and users.
In order to subscribe to a service, a node needs to know which nodes offer the
services. Therefore, nodes register their services at a Service Registry. Only FFNs
can become Service Registries. While these clustering and functional types are not

14 2. Problem Statement

used directly during the routing algorithm, they do play a role while designing the
algorithm and will be mentioned when explaining the algorithm.

In the next chapters, three new node types will be defined. These node types are
important for the routing protocol and are called routing node types. Here, a short
overview over these types will be given. They will be explained in more detail in the
following sections.

e MasterNode: The proposed routing algorithm uses a centralized routing
strategy. The complete routing process takes place in one node, which is
called MasterNode. There will only be one, predetermined, MasterNode in
the whole network.

e AccessNode: The AccessNodes are essentially gateways from the stationary
network to a mobile node. All traffic to or from the mobile nodes will go
through the AccessNodes. A network can have multiple AccessNodes for
every mobile node. The AccessNodes for every mobile node are predetermined
and do not need to be appointed by the routing algorithm.

e DistributorNode: Messages sent from a mobile node to several stationary
nodes can theoretically be sent from all AccessNodes and need to reach all
receiving nodes. This would lead to a complicated tree-like structure with
multiple roots. To simplify the matter, a DistributorNode will be intro-
duced so that traffic from mobile nodes will be routed to this node and then
distributed to all destinations.

The rest of the stationary nodes are treated as normal nodes and do not have
a specific routing node type. Furthermore, it is assumed that all nodes know the
complete network topology. This includes that all nodes know with which nodes they
can communicate, as well as which nodes will be interfered by their transmissions.
As shown in [18], gathering this information is possible.

2.4.2 Mobile Nodes

Mobile nodes are classified as an own type. They are not part of the clustering,
and therefore cannot be classified as one of the clustering node types. They can
act as service providers and users, but not as service registries. As they still need
to register their service, they choose a single service registry as their home registry.
There are several potential strategies which nodes they could choose. As the optimal
home registry is not important in context of the routing algorithm, this decision is
left open. A straightforward solution would be to choose the first FFN they contact
as the home registry. Another possibility would be to chose a node that is often in
range of the mobile node.

Mobile nodes can move in a certain area. They move with a relatively slow and
known speed. The geographical position of mobile nodes is known, which may be
used to predict their movements to some degree. While this is not used currently,
it may prove useful in future work on this subject. The mobile nodes communicate
with the rest of the network through the already mentioned access and distribution
nodes.

2.5. Related Work 15

2.5 Related Work

Algorithms for mobile networks are a well studied field. A comprehensive study of
the imperatives and challenges of mobile ad-hoc networks can be found in [10]. An
overview over general routing protocols for mobile networks can be found in [24] and
for wireless sensor networks, which have slightly different requirements, such as a
low energy consumption, in [4].

One of the major problems of wireless networks is the interference at receiving
nodes. The effect of the interference on the maximum throughput of the network
has been studied by Jain et.al. [I5].

As described in Section in a TDMA-based network the interference prob-
lem can be solved by scheduling the transmissions into time slots. An analysis of
this problem can be found in [14]. This paper states reservation criteria, similar to
the ones in Section [2.2.1] which have to be fulfilled to achieve conflict-free trans-
missions. Another solution to this scheduling problem is presented in [30]. Here,
an integer linear programming (ILP) formulation is used to find optimal solutions
to the scheduling problem. The authors also define heuristics to solve the problem
in shorter time. Another approach is shown in [28], where the scheduling is done
according to three slot decision policies to increase the chance of finding a feasible
schedule. A variation of these policies, adjusted to the specific requirements of this
scenario, will be used in one of the scheduling algorithms in Chapter

In Section [2.3] the Quality of Service requirements for this thesis have been ex-
plained. Routes found by the routing algorithm need to satisfy the QoS require-
ments, e.g., every link of the route must have enough free bandwidth. In this thesis
the bandwidth requirement is one time slot per super slot for all links. The gener-
ally most common QoS parameter is bandwidth, but some protocols offer different
QoS parameters, such as the end-to-end delay of transmissions [5] or define other
parameters such as the network cost (in that case the consumed bandwidth) of a
route [I6]. Other QoS routing protocols for mobile networks can, e.g., be found in
6, 211, 22].

Another requirement for the routing algorithm is the ability to create routes from
a single source to multiple destinations at the same time. This is known as multicast
routing, which normally, but not necessarily [I1], leads to tree-like routes. Example
multicast routing protocols are “SOM” [7] or “MAODV” [25]. The advantages of
multicasting will be further discussed in Chapter [3]

There are not many routing protocols that fulfill all requirements, i.e., that of-
fer QoS-multicast routing for TDMA-based networks with mobile nodes. Examples
for existing protocols are “PSLCB” [31] and “Hexagonal-Tree-Routing” [9]. Both
protocols fulfill the requirements and offer bandwidth as the QoS parameter. The
“Hexagonal-Tree-Routing” protocol also includes the use of multiple paths to in-
crease the chance of finding a feasible schedule. This means that data can be split
into multiple parts and sent along different routes, which reduces the bandwidth
requirements of some links of the route. Due to the assumption that transmissions
only need one time slot in this scenario (see Section [2.3), this will not be used here.

One problem is that the scheduling of management packets (e.g., route requests)
is not part of these two algorithms. Also, the fact that the interference range of nodes
is, in general, greater than the communication range, is either ignored or not solved

16 2. Problem Statement

correctly in the case of “PSLCB” (not enough links are blocked by a transmission).
A more detailed analysis of these two protocols has been done as a preparation for
this thesis and can be found in [12].

More routing protocols exist for networks with a CDMA-over-TDMA model, as
described in [211, 22], in which a CDMA (Code Division Multiple Access) mechanism
is used on top of TDMA. In the CDMA model, messages are encoded with special
codes so that other nodes, with access to the right codes, can receive the messages
correctly despite of overlapping transmissions. This has the effect that the inter-
ference between nodes can mostly be ignored, but introduces the need to distribute
the codes used for CDMA between the nodes. One example QoS-multicast rout-
ing protocol for networks based on CDMA-over-TDMA is the “Wu-Jia” [16] routing
protocol, which offers several strategies to find bandwidth-satisfying routes that min-
imize the delay or bandwidth consumption of the routes. Another protocol for this
network model is the “Lantern-Tree based QoS Multicast Protocol” [8], which offers
a high chance of finding a bandwidth-satisfying route with the help of multipath
tree structures (called lanterns) based on the spiral-fat-tree on-demand multicast
(SOM) [7] protocol, which is another multicast protocol for mobile networks that
uses trees with increasingly more bandwidth available near the root of the tree. Like
“PSLCB” and “Hexagonal-Tree-Routing”, these two protocols have been analyzed in
[12]. Due to the requirement of a TDMA-based network, these protocols cannot
be used in their original form in this thesis. However, some of the ideas used in
these two protocols were helpful starting points for the development of the proposed
algorithm.

2.6 Objective of this Thesis

The objective of this thesis is to develop a routing protocol for the described scenario.
The routing algorithm has to fulfill several requirements:

e it needs to find routes from one source to several destinations
e it needs to find a feasible slot schedule for those routes

— the schedule needs to be conflict-free
— the schedule has to fulfill a bandwidth requirement of one slot per link

— it should be possible to minimize the delay of a transmission

The objective can be partitioned into several sub goals.

2.6.1 Sub Objectives
Routing from Stationary Node to Stationary Node

The first objective is to find routes between stationary nodes, including the possi-
bility to have several destinations for a single source. The case involving mobiles
nodes is treated separately.

2.6. Objective of this Thesis 17

Routing including Mobile Nodes

Due to the movement of the mobile nodes, the route discovery as well as the timeslot
assignments are more difficult. The proposed solution extends the stationary to
stationary algorithm, to achieve communication with the mobile nodes with the
help of AccessNodes and DistributorNodes.

Timeslot assignments

After a route has been created, timeslots for sending and receiving messages have to
be assigned to all nodes that are part of the route. This is handled as a sub objective
to increase the modularity of the algorithm.

18

2. Problem Statement

Chapter 3

Centralized Multicast Routing

In the previous chapter, the requirements for the routing algorithm were explained.
One requirement is the ability to send data from one source to several destinations.
A simple way to reach more than one destination would be to create several unicast
routes. In this case, parts of the paths to several destinations could be identical.
This leads to a waste of resources while sending the data. A better solution is the use
of multicast trees. Here, a tree-like structure with the source of the route acting
as the root of the tree and the destinations acting as leaves will be created. This
leads to a decrease in resource consumption by avoiding redundant transmissions of
messages and corresponding slot reservations.

When using wireless communication, which is a broadcast medium, resources can
be saved by sending from one transmitter to several receivers at the same time. As
mentioned in Section this will be used in the algorithm, allowing nodes to send
to up to three different receivers at the same time. Figure shows an example
multicast tree from the source k to the destinations h, e and a. The blue path is the
same for all destinations and node g makes use of local multicasting to reach three
nodes (h, d and ¢) at the same time.

Generally speaking, algorithms can be classified as either centralized or decen-
tralized. In an centralized algorithm, the function of the algorithm is executed in a
single device, while in decentralized solutions the algorithm is executed separately

Figure 3.1: An example multicast tree with shared paths and local multicast in
node ¢

20 3. Centralized Multicast Routing

by all relevant nodes. A centralized approach has several downsides, e.g., it leads to
a single point of failure. When the master device fails for some reason, the algorithm
cannot be used anymore until a new master has been chosen. On the other hand, a
centralized solution also offers advantages. For example, it can lead to a decrease in
management traffic compared to decentralized algorithms, because nodes often do
not have to exchange information required by the algorithm.

In this thesis, it was decided to use a centralized approach. A new node type,
the MasterNode is introduced, which handles the route discovery and timeslot
scheduling. For the route discovery in this scenario, a centralized solution does not
have as many advantages as usual, because of the assumption that all nodes know
the complete network topology. With that knowledge, discovering routes is not that
complicated. However, the MasterNode will be significantly more important for the
scheduling algorithm (see Chapter [4)).

One of the remaining advantages of the MasterNode is that it reduces the im-
portance of the clustering and functional node types. For the routing algorithm,
the clustering topology of the network is irrelevant, which means that distinguishing
between the different clustering node types is not necessary.

One concern for the RFNs is, that they do not have enough computation power
to handle the route discovery and scheduling, but with the introduction of the Mas-
terNode, this is not important anymore and all clustering and functional node types
are treated equally.

The MasterNode obviously does not know which nodes need which routes. There-
fore, it has to be able to receive routing requests from all other nodes. It also needs
to inform the nodes of the chosen routes and schedules. While the focus of this
thesis lies on the discovery of the routes and their transmission schedule, these two
steps cannot be ignored and a brief solution will be presented in Sections and
However, the route request and route confirm phases have not been implemented.

MasterNode

According to the assumptions, the MasterNode knows the topology of the network
and the communication and interference neighborhood of all nodes. As the Mas-
terNode handles all route requests, it also knows the complete schedule for all nodes
in the network. With this information, the MasterNode has to handle the following
tasks:

e receiving route requests from nodes
e discovery of routes and timeslot assignments
e informing nodes about the routes and the schedule

To handle these tasks efficiently, a suitable node has to be chosen as MasterNode.
There are several criteria, depending on the application scenario, which can be used
to determine a candidate.

One of the disadvantages of a centralized routing approach is that it leads to
a single point of failure. In the application scenario for which this algorithm was
developed BBS [13] is used. BBS, in the applied form, already has a single master

3.1. Assessment criteria for the Route Discovery 21

node and the synchronization fails when that node fails. Without synchronization,
conflict-free transmission cannot be achieved in a TDMA based network. Therefore,
the network already has a single point of failure. So using the same node as the
MasterNode for the routing algorithm does not introduce a new point of failure.

In other scenarios there can be other, better, criteria. A good candidate would
usually be a node with a low average distance to all other nodes, to reduce the
management overhead. In some contexts, e.g., battery powered sensor networks, the
available energy / computation power may be a good criterion, because the master
node has to do more work compared to the rest of the nodes.

3.1 Assessment criteria for the Route Discovery

Before designing the algorithm, it has to be decided which objectives it has to fulfill,
i.e., what a good multicast tree looks like. There are several criteria that are useful
to evaluate a tree. It is not possible to create a single evaluation criterion that fits
all application contexts. Therefore, several factors are proposed.

3.1.1 Number of Hops

The first criterion is the total number of hops in the multicast tree. The number
of hops in the tree is related to the total number of transmissions and receptions
necessary to reach all destinations. Due to the use of local multicasting, the numbers
may be different. As sending and receiving data consumes resources (in this case
time slots), this is a reasonable factor to approximate the total resource consumption
of a route.

Therefore, one objective of the routing strategy is the minimization of the total
number of hops in a tree.

3.1.2 Length of Paths

In Section [2.3] it was mentioned that the delay of a transmission is of importance.
When using multicast routing, the delay is the time it takes to send a packet from
the source to all destinations. Due to the use of TDMA as the medium access
strategy, the delay will be measured in the number of slots it takes to complete the
transmission. The routes themselves are not the only factors determining the delay.
It also depends on the schedule (see Section , but the routes can be used to get a
lower bound for the delay. The lowest possible delay of a path is equal to its length.
Therefore, minimizing the length of the paths from the source to the destinations
should have positive influence on the delay.

Therefore, the route discovery algorithm tries to optimize the length of the paths
from the source to all destinations.

3.1.3 Cost

The last criterion is aimed at networks with a high utilization. Every transmission
that is made blocks other transmissions in its scheduled slot in a rather large area.

22 3. Centralized Multicast Routing

If more slots are blocked, it becomes increasingly difficult to find a feasible schedule
for future routes. Generally speaking, the number of slots blocked by a transmission
correlates with the number of interference neighbors of the participating nodes.
Therefore, nodes with a low number of interference neighbors have less impact on
the scheduling of future routes. On the other hand, the cost also heavily depends
on already existing slot assignments. It is possible that all neighbors of a node are
already blocked from sending / receiving in a specific slot. In this case, using this
slot does not lead to an increased cost. The cost is another criterion that will be
kept in mind.

3.2 Common Functions

Before introducing the routing algorithm, several often used functions have to be
specified.

e getShortestPaths(node source, node destination): Returns an array of
shortest paths from the source node to the destination node. If only one path
exists, the array has the size one. The individual paths can be addressed
by their position in the array. So path p = getShortestPath(source,dest)[1]
refers to the second path. All paths start with the source and end with the
destination.

e minValue(list values),maxValue(list values): Returns the minimum or
maximum value out of a list of values.

e minIndex(list values),maxIndex(list values):Returns the index of the
first occurrence of the minimum or maximum value of a list of values.

e getDistance(node a, node b): Returns the distance from node a to node b.

e getDistance(node a, node b, path p): Returns the distance from node a
to b, when using a specific path p.

3.3 Route Request Phase

A route request is issued whenever a node wants to join a multicast tree. In the
context of a SA, this is the case whenever a node wants to subscribe to a service
of another node. If no other node is subscribed to this service from this specific
provider, a new tree has to be created. It is not possible to use a single tree to
send different data to different destinations. Therefore, a service provider can be
the source of several multicast trees, if it offers different services.

The trees are assigned a tree id, which together with the source node, serves as a
unique identifier for the tree. In a SA the tree id can be related to service ids, which
are necessary to identify a service. The route requests are sent from the requesting
node to the MasterNode, after they have identified the service id and the id of the
service provider. They can get this information from their assigned service registry.

3.3. Route Request Phase 23

The exact operating mode of the service architecture is not part of this thesis and
the routing algorithm should be as general as possible. Hence, every node, which
knows the right tree id and the id of the root of the tree, is able to request a route.

The MasterNode receives the route request and either creates a new tree, or
expands an existing one (see Section [3.5)).

3.3.1 Packet Types

The basic idea for the route request phase is to use the management slots of the
nodes to send route request packets (RRP) to the MasterNode. One of the as-
sumptions is, that every node has complete knowledge of the network topology as
well as one management timeslot in which it has exclusive sending rights (conflict
free transmissions). With the knowledge of the topology, every node can calculate
a shortest path from itself to the MasterNode. The packet is then sent to the next
hop on this path during the management slot. The next node can also calculate the
shortest path to the MasterNode and repeat the process.
The RRP is defined as follows:

RRP(nodeld, nextHopld, treeRootld, destinationNodeld, treeld, re-
questlId)

e nodeld: The id of the node currently sending the packet. This field will be
updated by every node forwarding the packet as it is used to properly address
the acknowledgments.

e nextHopld: The id of the next destination of this packet, which is necessary
for the receivers of the packet to determine whether they are responsible for
forwarding the packet.

e treeRootld: The id of the root of the requested multicast tree, used to iden-
tify the tree.

o destinationNodeld: The id of the new destination which has to be added
to the tree.

e treeld: An id of the multicast tree, used together with the treeRootld to
identify the requested tree.

e requestld: An incremental id to identify this request, which is necessary to
distinguish between multiple requests of the same node.

It was already mentioned that the RRPs are acknowledged. Therefore, an acknowl-
edgement (ACK) has to be specified:
ACK(nodeld,receiverld,requestId)

e nodeld: The id of the node sending the ACK.
e receiverId: The id of intended receiver.

e requestld: The same as the requestld from the RRP that triggered this ACK.
Together, these fields can be used by the receiver of the ACK to identify which
RRP is acknowledged.

=W N =

© o N 3w

11
12
13
14
15
16
17
18
19
20

0o N O Ot s W N

N

w

N O ot

24 3. Centralized Multicast Routing

3.3.2 Protocol

The first step of the protocol is the creation of the RRP packet, which is done by
the node requesting a route. It is assumed that the requesting node knows the root
and id of the tree it wants. This is shown in the following listing.

/+ Creates an RRP packet for a given tree mTree with a known root */

createRRP (node root, id treeld):
/+* Get an array of shortest paths from itself to the MasterNode
v/
paths = getShortestPaths (myNodeld , MasterNode)
/% Choose one of the paths, which one is irrelevant x/
shortestPath = paths[0]

/+ set all values of the packetx/

RRP.nodeld = myNodeld

RRP.nextHopld = shortestPath[1]. getId() // next hop on the path
RRP. treeRootld = root.getld ()

RRP. destinationNodeld = myNodeld

RRP. treeld = mTree. getld ()

RRP.requestId lastRequestID+1

/% schedule the packet for the next management slot x/
schedule (RRP)

/% set a timeout for this RRP and wait for the ACK x/
setTimer (RRP,lengthOfASuperslot)

The function createRRP prepares and schedules the RRP to be sent in the next
management slot. The first node of the first shortest path is chosen as the next hop.
It is not important to choose a specific one, because all paths have the same length
and no SDMA is used during the management slots.

Nodes receiving a RRP in any time slot need to forward it, which is shown in the
following listing.

/+ Sends an ACK and forwards the packet %/
receiveRRP (RRP) :
/x check if itself is the intended receiver x/
if (nextHopIld = myNodelD) :
/x send ACK x/
sendACK (myNodeld ,RRP. nodeID ,RRP.requestID)
/+ send RRP x/
forwardRRP (RRP)

ReceiveRRP first checks if the node is the intended receiver of the packet. In that
case, it creates an ACK which will be sent immediately (i.e., in this time slot) and
forwards the RRP:

/+ Called when a node receives an RRP and is the intended receiver x/
forwardRRP () :
/x Get an array of shortest paths from itself to the MasterNode
*
/
paths = getShortestPaths (myNodeld , MasterNode)
/+* Choose one of the paths, which one is irrelevant x/
shorestPath = paths[0]

10
11
12
13
14
15
16

© 9] ~ =] ot - W [V -

10

© 0 N O ot W N =

=
N = O

3.3. Route Request Phase 25

/+* update necessary values of the RRP packet x/
RRP.nextHopID = shortestPath [1]. getId ()
RRP.nodeld = myNodelD

/+ schedule the packet for the next management slot x/
schedule (RRP)

/x set a timeout for this RRP and wait for the ACK x/
setTimer (RRP, lengthOfASuperslot)

To forward the RRP, the node has to determine the shortest path from itself to
the MasterNode, update the relevant fields of the packet and schedule it to be sent
in its next management slot. Additionally, the node sets a timer for one super
slot. If it does not receive the ACK within one super slot, the RRP has to be re-
transmitted. Waiting for one super slot is enough, because every node has at least
one management slot per super slot. Waiting for less time could mean that this
node’s management slot is after the timer runs out (e.g. if this node’s management
slot was directly before it received this RRP).
The ACK creation and transmission is relatively straightforward:

/+ Creates and sends an ACK immediately %/

sendAck (id nodeld,id receiverId, id requestID):
/x set ACK values x/
ACK.nodeld = nodeld
ACK.receiverld = receiverld
ACK. requestID requestID

/% send the ACK immediately */
send (ACK)

The ACK is created and the relevant fields are set to the values determined in the
receiveRRP function sent immediately (in this micro slot).
Finally, ACKs have to be received by other nodes:

/+ Called when receiving an ACK x/
receiveAck (ACK) :
/x identify relating RRP packet x/
search RRP where:
RRP. nextHopld = ACK. nodeld
myNodeld = ACK. receiverID
RRP.requestld =— ACK.requestId

/+ If true, the corresponding RRP can be discarded x/
true: delete (RRP)

/+ and the timer stoped x/

stopTimer (RRP)

When receiving an ACK, the nodes check if its fields correlate to an RRP they have
sent. If that is the case, they delete the RRP and stop the timer, as both are not
needed anymore. If the timer is triggered before the ACK is received, the RRP is
resent in the next management slot.

Figure illustrates the route request phase. The nodes are identified by their
nodeld. Node 10 was chosen as the MasterNode and node 1 issues the route request.

26 3. Centralized Multicast Routing

Step 1:
Current super slot k

Node 1 sends RRP in
its management slot (1)

Step 2:
Current super slot k

Node 6 forwards RRP in
its management slot (6)

Step 3
Current super slot k+1

Node 3 forwards RRP in
its management slot (3)
of the next super slot

Figure 3.2: Node 1 sends a route request. It is assumed that the corresponding
management slot has the same number as the node id.

3.4. Route Confirm Phase 27

Every node has reserved the management slot with the same number as its nodeld.
It is also assumed that the route request is started in super slot k. Node 1 wants to
join a multicast tree as a destination. It knows that node 7 is the root and that the
treeld of this tree is 0.

A reason for this request could be that it wants to subscribe to a service from node
7. Since this is the first request from Node 1, the request id is 0. Node 1 determines
all shortest paths (blue in the figure) and chooses the one with the lowest next hop
node id. It then creates the RRP packet: RRP(1,6,7,1,0,0)

The RRP is scheduled and sent in the management slot of node 1 (slot 1).
Node 6 and 9 both receive the packet in slot 1. They both execute receive RRP and
node 9 discards the packet, because it is not the next hop on the path. Node 6, on the
other hand, realizes that it is the next hop. Therefore, it sends an acknowledgement
packet: ACK(6,1,0).

Node 1 receives the ACK and compares it to the RRP it sent, which is then
deleted.
Node 6, after determining the shortest path to the master node, updates the RRP
as follows: RRP(6,3,7,1,0,0).

The packet is then scheduled and sent in the management slot of node 6 (slot 6).
A difference here is that the management slot of node 3 (slot 3) is before the man-
agement slot of node 6. Therefore the re-transmission of the RRP packet is delayed
by nearly one super slot. This highlights one of the problems of using static man-
agement slots.

The MasterNode receives the ACK in slot 3 of super slot 2, and after acknowl-
edging it, starts the route discovery (see Section .

3.4 Route Confirm Phase

After a route has been established by the MasterNode, all nodes that are part of the
route have to be informed of the updated routes and the corresponding schedule.
This is achieved by a Route Confirm Packet (RCP), which is sent by the MasterNode
after route discovery and slot scheduling are finished. The RCP contains the involved
nodes and the complete schedule for all of them.

The RCP needs to reach all nodes of the route, which is another multicasting
problem. Possible ideas are the creation of another multicast tree to reach all nodes,
which would require creating a new schedule for the RCP, or the use of the manage-
ment slots to send them.

Creating another multicast tree and schedule is a costly activity and using the
management slots has a potentially high delay. Also, the RCP packets would be in
conflict with the RRP packets, because if a node has packets of both types to send,
it has to decide which of them it will send in the current slot.

However, the RCP packet already contains the route and schedule to reach all
nodes of the route from the source of the tree. Therefore, it is proposed that the
RCP packet is sent to the root of the relevant tree using the management slots,
and then sent along the created route, using the created schedule, to reach all other
nodes in the tree. This requires that all nodes listen to the medium, even in idle
slots. As minimizing energy consumption is not an objective of the algorithm, this

28 3. Centralized Multicast Routing

solution is used. Depending on the application, it may also be possible to send the
RCP packet together with the first data packet to save time. The RCP packet is
defined as follows: RouteConfirmPacket (RCP):

(nodeID, nextHopld, destinationId, treeld, mTree, schedule, requestId)

e nodeld: The id of the node currently sending the packet. This field will be
updated by every node forwarding the packet as it is used to properly address
the acknowledgments.

e nextHopld: The id of the next destination of this packet, which is necessary
so that the receivers of the packet can determine whether they are responsible
for forwarding the packet. Without that, a lot of redundant packages would
be send.

e destinationld: The id of the destination of this packet, which is the same as
the treeRootld from the routing request.

e treeld: The id of the multicast tree.

e mTree: A list of paths forming the multicast tree.

e schedule: The updated schedule for all nodes.

e requestld: The same as the requestld of the routing request.

The scheduling and acknowledging of the RCP is very similar to the route request
phase and therefore will not be discussed in detail. The main difference is that the
RCP has to be sent to the root of the created or expanded tree. As this information
is part of the packet, this is not a problem.

Once the packet has reached the source, the created tree and updated schedule
can be used to send the packet to all other nodes that are part of the relevant tree,
identified by the id and the list of paths mTree.

The RCP is sent to all nodes that are part of the corresponding routes, starting in
the first super slot after the root of the tree has received the RCP. This means, that
the first transmission in a new or updated tree does not contain a data packet. It is
not possible to send an RCP and a data packet in the same micro slot, therefore the
data transmission is delayed for a super slot. The RCP is always sent to all nodes
of the tree, even if a destination has been added to an already existing tree. As it
is not possible to send an RCP to some of the nodes of a tree, and a data packet
to other nodes of the tree at the same time, sending to all nodes in the tree does
not cost more time (slots). A possible optimization would be to send the RCP only
to the nodes that have to update their schedule. This would lead to a decrease of
energy consumption by saving some redundant transmissions.

3.5 Route Discovery

The route discovery phase handles the creation or extension of multicast trees. The
RRP always contains a request for a route between one source and one destination.

3.5. Route Discovery 29

Therefore, the MasterNode has to either create a tree with one root and one des-
tination or add a single destination to an existing tree. Also, it is distinguished
between trees containing mobile nodes and trees containing only stationary nodes.
Mobile nodes are only part of a route if they are the source or one of the destinations
of a tree. Otherwise, the route only contains stationary nodes. Section [3.5.1] and
following contain the algorithm for the stationary tree, while Section [3.5.3] contains
the mobile case. The scheduling of timeslots is explained in Chapter

3.5.1 Creating a New Stationary Multicast Tree

The first case that will be discussed is the creation of a new multicast tree. This
situation occurs whenever the MasterNode handles a route request that does not
fit into an existing multicast tree, i.e., there is no existing multicast tree with the
relevant id and root. When using a SA, this is the case when a node requests the
service of a service provider that currently does not have other users, or all other
users are subscribed to a different service. There are two different methods for the
creation of a stationary multicast tree, which result in slightly different trees.

Create a new Tree depending on the existing Schedule

The first method finds the shortest path from the source to the destination using the
getShortestPaths function from Section Usually there will be multiple shortest
paths with the same length. Therefore, one of the paths has to be chosen to form
the initial multicast tree.

Here, a function getMinNumberOfFreeSlots(path p, threshold) is defined. The
function determines the number of free slots for all links on a path. If the minimum
number of free slots is greater than a given threshold, the function returns this
number as the minimum for this path. Otherwise, the path is discarded.

With the help of this function, the createNewTree algorithm is defined:

/+ Create a new mulitcast tree mTree with one source and one
destination */
createNewTree (node source, node dest):
/+* Get an array of shortest path from the source to the
destination %/
paths = getShortestPath (source, dest)

/% get the minimum number of free slots for all of the paths,
if it is greater then a threshold x/
for (path p:paths):
minFs[p] = getMinNumberOfFreeSlots(p, threshold)

/% and choose the one with the lowest number as the multicast
tree mTree x/

mTree = paths[minIndex (minFs) |

return mTree

The createNewTree function chooses the shortest path with the help of the getMin-
NumberOfFreeSlots function. The idea behind createNewTree is to minimize the
impact that the new tree has on the rest of the network. Choosing a path with a
low number of free slots — as long as there are still enough slots to find a feasible

30 3. Centralized Multicast Routing

S]] R [J

Figure 3.3: An illustration of the tree creation with createNewTree.

schedule — should increase the chance of finding a suitable path / schedule for later
route requests. Paths with a low number of free slots are in parts of the network
with already existing traffic. Existing traffic means that a lot of slots are already
blocked, so adding new transmissions will block less new slots.

The result of this algorithm depends on the threshold for the getMinNumberOf-
FreeSlots function. A safe threshold is the number of links in the route. The maxi-
mum number of slots needed for a path is the number of links in it. If every link has
this many free slots, it is guaranteed that a schedule can be found. Another possi-
bility is to choose the maximum number of nodes in the interference range of any
node on the path as the threshold. As a used slot can not be reused by nodes in the
interference range of the sender (and this includes nodes that are in this path), this
leads to a high chance of finding a schedule for this path with the right scheduling
strategy (see Section [4.5.2.2). Choosing a lower number than this can also lead to a
feasible schedule, but the chance of finding it decreases with a lower threshold.

Another possibility is to choose paths that have a high number of free slots, by
exchanging minIndex(minFs) with mazIndex(minFs) in line 11. In this case, the
chance of finding a feasible schedule is generally increased, but it will probably also
result in more slots being blocked.

An example for the createNewTree method is shown in Figure Here, it is
assumed that the interference range of all nodes is the same as their communication
range. In the left image, there is an already scheduled transmission from node b to
node cin slot 1. This means that nodes g and f (and also nodes a and d) are blocked
in slot 1. A new tree with node k as source and node h as destination will be added
to the network. Three shortest paths from £ to h are found. Examining the number
of free slots in all nodes of those paths (assuming that no specific threshold is set)
leads to the blue path as the chosen one, because it has one free slot less than the
other two paths. Here, link (k,7) could be scheduled for slot 1 as the slot is free in
both nodes. As slot 1 is already blocked in node f and g (both neighbors of node)
only two additional slots are blocked (in node j and [).

The downside of the function can be seen in the right figure. Adding another
transmission from c to d results in node g being blocked in slots 1 and 2, in this case
using the blue path means that no schedule will be found, because node g needs two
slots (one for receiving and one for sending), but only has one slot available.

© 00 N O

11
12

3.5. Route Discovery 31

This is why the possibility to use a specific threshold, or preferring paths with a
high number of free slots, is given. In this example, both the red and paths
could be used and both of them have more slots available and therefore one of them
would be chosen.

Create a new Tree depending on the Degree of Nodes

The previous method depends on the already existing schedule in the network, to
either increase the chance of finding a feasible schedule or minimize the impact of
the path for the rest of the network. Here, another method which tries to find a
good tree for this particular request is proposed.

createNew TreeDegree also finds a list of shortest paths from the source of the tree
to the destinations. However, it chooses a different path to form the initial multicast
tree.

/* Create a new mulitcast tree mIree with one source and one
destination =/
createNewTreeDegree (node source, node dest):
/+* Get an array of shortest path from the source to the
destination x/
paths = getShortestPath (source, dest)
/x Calculate the degree for all paths as the sum of the degree
of the nodes x/
for (path p:paths)
for (node n : p)
degree [p] = degree[p]+numberOfNeighbors(n)

/x Choose the path with highest degree as the multicast tree
mTree x/

mTree = paths[maxIndex(degree) |

return mTree

For all paths, the degree of all nodes in the path is calculated and summed up, to
get a total degree for every path. Since a node has a high degree when it has a
large number of neighbors, it follows that a path with a high degree goes through
a dense part of the network (i.e., many nodes are in each other’s communication
range). When adding further destinations to the tree, this should lead — in general
— to shorter paths, because the chance of the new destination being near a node
already part of the tree is higher, compared to paths with a lower degree.

Figure 3.4 shows an example of the tree creation depending on the degree of
paths. In this example a new tree with node k£ as source and node h as destination
is created. The shortest path search returns three different paths, shown in blue,
red and . The degrees of the paths are as follows:

e blue: 2+5+4=11
° :24+54+3=10
e red: 24+3+3=28

Therefore, the blue path is chosen as the initial multicast tree. It can be seen that
this can lead to an improvement, compared to the other paths, as soon as new

32 3. Centralized Multicast Routing

Figure 3.4: An illustration of the tree creation with create NewTreeDegree.

destinations are added. The majority of the nodes are closer to the blue path than
to the other paths. Obviously, this will not always be the case.

It is possible to construct examples where this method will lead to a tree with more
links than a method that chooses the path differently, as soon as more destinations
are added to the tree. Assuming that every node issues the same number of route
requests, it will usually lead to a tree with a lower number of hops, because, on
average, new destinations will be closer to the chosen path.

This method also has disadvantages. When taking the slot reservations into
account, a node with many neighbors will also block many other nodes when trans-
mitting. Technically, a node with a lower number of neighbors can have a higher
number of interference neighbors than a node with a higher number of communica-
tion neighbors, but that should rarely be the case.

3.5.2 Adding Destinations to Existing Trees

Another needed functionality is adding a destination to an already built multicast
tree. When adding a destination to the tree, the first goal is to minimize the overall
number of links in the tree. Therefore, the shortest paths from the new destination
to all other nodes of the tree are determined. After that, the shortest possible length
is determined and all longer paths are discarded. The result is a list of paths that all
have the same (shortest possible) length. It is possible, although unlikely, that they
all end on the same node. More often there are several nodes that can be reached
with the same number of hops.

The second goal is to minimize the potential delay of sending from the source to
all destinations. The delay (when measured in the number of hops) is at least as
long as the length of the route from the source to the destination. To achieve this,
the algorithm chooses the path that has the shortest route from the source to the
destination from the determined list of shortest paths.

1| /% Adds a destination dest to an existing tree mTree x/
2laddDestToTree(tree mTree , node dest)

3
4

/+* Go through all nodes of the tree x/
for (node x : mTree) {

© ® N O

10
11

12
13
14

15
16
17
18
19

20
21
22
23

24
25
26
27

28

3.5. Route Discovery 33

Figure 3.5: An example of adding a new destination to an existing multicast tree

/+* and get an array of all shortest paths from this
node to the destination x/
paths = getShortestPath (x, dest)
/xsave the length and the paths x/
tempLength[x] = |paths[0]]
shortestPath [x] = paths
}
/+* Get the minimum possible length to reach the tree from the
destination */
minLength = minValue (tempLength)

/+ and go through the tree again and save all paths with the
minimum lengthx/
for (node x:mTree):{
if (tempLength[x] = minLength):
finalPaths[x] += shortestPath [x]
}
/+ finally , find the path that has the minimum length and the
shortest distance to the source x/
minLength = maximumNetworkDiameter
for (node x:mTree):
for (path p:finalPaths[x]):
length = getDistane (x,mTree.source ,p) //number
of hops from z to source using path p
if (length < minLength):
length = minLength
result = p
/+ result contains the chosen path and has to be added to the
tree */
mTree += result

In Figure[3.5] a new destination a is added to an already existing multicast tree with
source k and destinations h and e. The first step is to determine the shortest path
from the new destination a to all nodes already part of the tree. The picture only
shows the paths to the nodes 7, g and d, but in in the initial step the paths to the
other nodes k, h and e are also included. The next step is to identify the length of
the shortest possible paths to one of the nodes, in this case three. All paths longer
then three are now discarded. The remaining paths are displayed in blue, red and

34 3. Centralized Multicast Routing

. In this example, there is each one shortest path from a to d, g or ¢. This is
usually not the case.

The next step is to choose which path will be added to the multicast tree. There-
fore, the number of hops from the new destination a to the source using the examined
path has to be calculated. In this case the resulting paths and distances are as fol-
lows:

e blue: (a,b, f,i, k) with the distance 4
° : (a,b,c,g,1, k) with the distance 5
e red: (a,b,c,d, g,i, k) with the distance 6

Obviously, the blue path will be chosen, since it has the smallest distance from the
destination a to the source k. If there are still several paths left at this point, the
same heuristics as in the createNewTree and createNewTreeDegree functions can be
used to choose one of them.

3.5.3 Creating a Mobile Multicast tree

The route discovery is different when sending from or to mobile nodes. The mobile
nodes move and therefore it is not possible to include them in a normal multicast
tree. As soon as a mobile node moves out of the range of the nodes currently
connecting it to the tree, it would be necessary to create a new tree or at least to
repair the current tree. To solve this problem, a new type of nodes is introduced.

AccessNodes

Each mobile nodes is assigned a number of AccessNodes, which form gateways from
the stationary network to the mobile nodes. The AccessNodes have to forward the
data from stationary nodes to the mobile node, or from the mobile node to the
stationary nodes. This means, that at least one of the AccessNodes has to be in
communication range of the mobile node at all times. If several AccessNodes are
currently in the range of the mobile node, one of them has to be chosen to act as
the currently active AccessNode.

A number of AccessNodes has to be chosen, so that at least one of them is in
range of the mobile node at all times. One possibility is to choose the minimal
number of nodes which is necessary to cover the whole movement area of the mobile
node with their combined communication range. A problem with this strategy is
that the communication quality between the mobile node and the AccessNode can
change depending on the movement of the mobile node, for example due to obstacles.
Therefore, it is hard to define how many / which nodes are needed when only looking
at the theoretical communication ranges.

Another way to choose the AccessNodes could be measuring the link quality from
the mobile node to all stationary nodes, while the mobile node moves around, and
then choose enough AccessNodes, so that the mobile node always has a stable link
to at least one of them. This would be done during the preparation, not while the
network is actually in use.

0 N O Ot s W N =

3.5. Route Discovery 35

Another important point is that the AccessNodes as well as the mobile node have
to know which AccessNode is currently in range of the mobile node and if more than
one is in range, which one is currently acting as the gateway to the mobile node
(this node will be called active).

Therefore, the mobile node and the AccessNodes exchange periodic beacon
frames. The mobile node can use the beacon frames to determine which nodes
are in its range and which currently has the best link quality, and then choose that
node. A measurement of the link quality is the received signal strength, which is
a good indicator for the resulting packet reception rate [29]. The currently active
AccessNode has to be informed.

For future work, the geographical position and movement speed of the mobile
node could be used to predict which nodes are active at which time, in order to save
traffic and therefore resources.

As mentioned in Section [2.4.1] it is assumed that the AccessNodes are predeter-
mined, and are distributed such that at least one of them is in range of the mobile
node at all times.

3.5.3.1 Route Discovery with a Mobile Node as Destination

The algorithm to create a multicast tree with mobile nodes is further split into two
cases. In the first case the mobile node acts as a destination of the multicast tree. As
explained earlier, the mobile node is always in range of one of the AccessNodes, but
the root of the multicast tree can not predict which of the AccessNodes is currently
active. Therefore, the data is always sent to all AccessNodes at once and only
the last hop, from the AccessNode to the mobile node, changes depending on its
position. Therefore it is sufficient to create a multicast tree with all AccessNodes
as destinations. The last hop (from the AccessNodes to the mobile node) will be
handled by the scheduling algorithm in Chapter [4

The only difference to the stationary routing is, that now a tree with several
destinations at once has to be created. First, a tree with one of the AcessNodes is
created and then the other AccessNodes are added as destinations. To do this the
createNewTree and createNewTreeDegree functions from Section [3.5.1] as well as the
addDestTo Tree function from Section are used.

At this point, it has to be decided which AccessNode is used to create the initial
tree and in which order the rest of the AccessNodes are added to the tree. It was
decided that the AccessNode with the shortest distance to the source is added first.
The rest of the AccessNodes are ordered by their distance to the source and added
consecutively. When two AccessNodes have the same distance, the one with the
lower id is added first. The algorithm that creates a tree with the mobile node as
the destination is shown below:

/+ Creates a multicast tree with the mobile node as the destination x/
createMobileTreeDest (node source, node mobile):
/% calculate the distance from the source to all AccessNodes x/
for (node a:AccessNodes):

distance[a] = |getShortestPath(a,source)[0]]
/+* choose the node with the shortest distance %/
shortestDistanceNode = minIndex(distance)

/x and use it to create a new tree x/

10
11
12
13
14

15
16
17
18
19

36 3. Centralized Multicast Routing

Figure 3.6: Creating a multicast tree with a mobile node M as destination.

mTree = createNewTree(shortestDistanceNode ,mobile)
/+* remove this node from the distance array */
distance.remove(shortestDistanceNode)
/% iterate to the rest of the nodes x/
while (| distance| > 0)
/+* choose the node with shortest distance from the
remaining nodes x/
shortestDistanceNode = minIndex(distance)
/x add it to the tree x/
addDestToTree (mTree, shortestDistanceNode)
/+ and remove it from the distance array x/
distance.remove(shortestDistanceNode)

Figure |3.6| shows an example of a multicast tree with the mobile node M as
destination. Here, the nodes b, d and i act as AccessNodes. The source of the tree
is k. Node i is closest to the source, and is used to create the initial tree (shown in
black). The other two nodes are both two hops away from the tree, therefore node
b is added first, followed by node d. The paths are chosen by createNewTree and
addDestToTree functions. The mobile node M is currently in range of node b.

Adding a Mobile Node as Destination to a Tree

Adding a mobile node as destination to an already existing tree, which can be a
stationary or mobile multicast tree, is done in the same way. Instead of creating the
new tree with one of the AccessNodes, all AccessNodes are added to the existing
tree with the function addDestToTree in the order of their distance to the root of
the tree.

3.5.3.2 Route Discovery with a Mobile Node as Source

For trees with a mobile node as source the route discovery is different. Again, the
AccessNodes are used as gateways from the mobile node to the stationary network.
A problem with this is that it would require multiple trees, one tree from every Ac-
cessNode to all destinations. To simplify the matter, a new node type is introduced.

-

[RN - ™

3.5. Route Discovery 37

DistributorNode

The DistributorNode is a new node type, that acts as a forwarder from the Ac-
cessNodes to the rest of the network. The AccessNodes send their data packets to
the DistributorNode, which then forwards them to the destinations. This means that
there is one multicast and one concastﬂ tree in this case (One mulitcast tree from
the DistributorNode to all destinations and one concast tree from all AccessNodes
to the distributor node). The tree from the DistributorNode to the destinations is
a stationary multicast tree and will not be discussed in detail.

However, the concast tree from the AccessNodes to the DistributorNode is created
differently. The main difference is that only one branch is used at any time, since
only one AccessNode is active at any time. This means that the only important
property of this tree is to have the shortest possible paths from the AccessNodes
to the Distributor Node. Minimizing the total number of links in the tree is not
necessary.

There will also be a different slot scheduling algorithm for this tree, because nodes
in the different branches cannot interfere with each other, as they will never be active
at the same time.

Choosing the right DistributorNode is also important. The number of hops in
the resulting trees, as well as the delay, will depend on the chosen node. There are
several strategies for choosing the DistributorNode. One strategy is to choose the
AccessNode which is currently active at the time the routing request is issued. This
will most likely result in a good tree as long as the mobile node stays in range of
the current AccessNode. As long as it does, the resulting tree is not different from
a completely stationary tree with the AccessNode as the source. However, as soon
as the mobile node moves out of range of the current AccessNode, another path will
become active, and then the resulting tree will not be optimal.

Another strategy would be to choose a DistributorNode which is always good.
A good DistributorNode is a node which allows the creation of routes, which are
optimized according to the assessment criteria (see Section [3.1). The chosen node
will be responsible for forwarding the data to potentially every node in the network.
Assuming that all nodes in the network are potential destinations, choosing a node
which is close to as many nodes as possible leads to trees with a low number of
links. Therefore, the average distance to all other nodes is calculated and the one
with the shortest average distance is chosen to be the DistributorNode as shown in
the following listing:

/+ Determines the node with the lowest average distance to all other
nodes */
getDistributorNode () :
/+ iterate over all nodes in the network */
for (node a: network G)
mean — 0
/x sum up the distance from this node to all other
nodes x/
for (node b: network G)
mean += getDistance(a,b)
/% and calculate the average distance x/

La tree from several sources to one destination

10
11
12
13

N O Ot s W N

10
11

12

38 3. Centralized Multicast Routing

mean = mean / numberOfNodes

meanDistance[a] = mean
/% return the node with the smallest average distance x/
return minIndex[meanDistance]

For future work, it is possible to optimize this selection if there is more information
available about the services of a mobile node. This information can be taken into
account and the nodes could have different weights during the average distance
calculation depending on how often they need the service of the mobile node.

For the rest of the thesis, it is assumed that the DistributorNode is chosen de-
pending on the unweighted average distance to all other nodes, unless specified
otherwise.

After the DistributorNode is determined, the route discovery for the tree with
the mobile node as the root can be executed. As mentioned in the beginning of this
section, two trees are needed here. The first is the tree from the AccessNodes to the
DistributorNode. It was already explained that the only important property of the
tree from the AccessNodes to the DistributorNode is the length of the individual
paths. This is exactly what the function createNewTree does. It finds all shortest
paths from one source (here an AccessNode) to a destination (here DistributorNode)
and chooses one of them to form the initial tree. For this tree, it is not useful to
choose a path with a high degree, because all destinations are connected to the
DistributorNode and not to other nodes that are part of this tree. So, choosing a
path with a higher degree has only disadvantages (higher interference).

Besides the tree from the AccessNodes to the DistributorNode, the tree from the
DistributorNode to the destinations has to be created. This is a stationary tree that
can be created with the usual functions (createNewTree and createNewTreeDegree).
The complete function for this case is shown in the following listing.

/+ Creates a mobile tree with a mobile node as the root, a stationary
node as the destination with the help of a DistributorNode x/
createMobileTreeRoot (node mobile ,node dest, node distri):
/+ the resulting tree is a combination of other trees x/
tree result
/+ iterate over all AccessNodes */
for (node a: AccessNodes):
/x and create a new tree from this node to the
DistributorNode x/
tree mTree = createNewTree(a, distri)
/+ add this tree to the resulting tree x/
result+=mTree
/% after the tree from the AccessNodes to the DistributorNode
has been created, the tree from the DistributorNode to the
destinations has to be created x/
createNewTree (distri ,dest) //can also use createNewTreeDegree

Figure 3.7/ shows an example of a mobile tree with the mobile node as source. The
nodes b, d and f are AccessNodes. The DistributorNode was chosen with getDis-
tributorNode. Node g has an average distance of 1.58 hops to other nodes, which is
the lowest in this example. The tree from the AccessNodes to the DistributorNode
is pictured in black.

It can be seen, that nodes b and f are each connected to the DistributorNode
g over a two hop path, even though they are in one hop distance to each other.

3.5. Route Discovery 39

Figure 3.7: An example of tree with the mobile node M as the source, the node g as
the DistributorNode, the nodes b, d and f as the AccessNodes and the nodes [and
e as the destinations.

So the total number of hops in this (black) tree is not optimized, because by, e.g.,
connecting f to b the tree would have one link less, but than the length of the
path from f to ¢ would be three instead of two. As explained at the beginning
of this section, this would be inefficient for the tree from the AccessNodes to the
DistributorNode.

The figure also shows the tree from the DistributorNode to the destinations in
blue. It shows that this leads to redundant transmissions in some cases. If node
f is the currently active AccessNode, the data is sent from i to ¢ and then again
from ¢g to i. Unfortunately, the paths have to be reserved anyway, because they
are needed when node b or e is active. A similar situation occurs when node e is
active. As the reservations do not change when the active AccessNode changes, the
redundant transmissions are sent anyway. A small advantage is, that if one of the
destinations receives the message while it is traveling towards the DistributorNode,
it was received after a shorter delay, but that only happens when there are no other
transmissions (e.g., from other trees) that interfere with receiving the message.

40

3. Centralized Multicast Routing

Chapter 4

Centralized Timeslot Assignments

Besides the route discovery (see Section , the second important part of the
routing algorithm is the scheduling of timeslots. In order to be able to transmit
in a conflict-free manner in a TDMA-based network, transmissions and receptions
of messages have to be scheduled into timeslots. In Section Property 2 was
introduced, which states the rules a schedule has to fulfill in order to be conflict-free.
The property states that a slot can be scheduled for a transmission if it is free in
the sender and all receivers, as well as in all nodes in their interference range.

It was also mentioned in Section that the scheduling problem is NP-hard,
which means that scheduling heuristics are needed, which will be introduced in this
chapter. The scheduling algorithm is always executed after a path has been added
to a tree.

The slot schedule is created by the MasterNode of the network. The main ad-
vantage of a centralized approach for the scheduling is the global knowledge of the
MasterNode, regarding both routes and schedules. The main downside is that the
schedule has to be sent to all relevant nodes as soon as it is updated, which creates
management overhead. On the other hand, a decentralized version would also create
overhead, because the nodes would need to exchange their schedules with all nodes
in their interference range, in order to create their own schedules.

Before presenting the algorithm itself in Section [4.5] several concepts and defini-
tions will be discussed (Sections to [4.4).

4.1 Slot Types

In Section it was explained that there are several important slot types. The
actual transmissions happen in micro slots of a fixed length. These slots are the
ones relevant for the scheduling algorithm. Micro slots are organized into super
slots, which contain a fixed number of micro slots. The super slots are repeating,
i.e. if a micro slot is reserved in one of them, it will be reserved in all following
super slots until canceled. Furthermore, there is a difference between management
and dynamic slots.

42 4. Centralized Timeslot Assignments

Management Slots

As the name suggests, management slots are used for management traffic, such as
the RRPs and RCPs. The management slots are static and predetermined for all
nodes, i.e. the management slots are distributed once and will not change during
the run time of a network. Every node has at least one management slot in every
super slot in which it has exclusive sending rights. This means that for management
traffic, no SDMA is used.

According to the assumptions (in Section , the exact distribution of the man-
agement slots is left open. The scheduling for the RRPs and RCPs was already
discussed in the relevant sections (Sections and and the scheduling of the
beacon frames from the mobile nodes is explained in Section [£.3] Besides that, this
chapter will focus on the scheduling of the dynamic slots for the routes found in the
route discovery phase.

Dynamic Slots with SDMA

The second group of slots are the dynamic slots, which are used for the general traffic
of the network, i.e., all traffic on the routes found in the route discovery phase. Here,
SDMA is used to increase the throughput of the network. A slot can be reserved by
a node to send or receive a data packet.

All messages in this thesis are acknowledged, i.e. both the sender and the receiver
of a data packet send in the reserved slot. In the following, the ACKs will not be
explicitly mentioned in the schedule.

For a better understanding of the scheduling algorithm, slots will also be blocked
from sending and receiving, even though it is not necessary for the functionality
of the algorithm. Due to the acknowledgement mechanism, it is not necessary to
distinguish between slots being blocked from sending or blocked from receiving (see
Property 1 and 2 in Sections and [2.2.2)). The dynamic slots can be addressed
by their slot number, starting at zero. The total number of dynamic micro slots in
every super slot is known (numberOfSlots).

4.2 Local Multicast

It was already mentioned in the previous chapter that the algorithm uses local mul-
ticasting to send to up to three receivers in a micro slot to increase the throughput
of the network. One of the problems of this is that the sender needs to receive ACKs
from all receivers. The ACKs have to be scheduled at different times, so that they
do not interfere with each other.

All nodes, that are part of a multicast tree, know the complete schedule for this
tree as soon as they receive the RCP packet. Therefore, they also know in which
nodes and slots local multicasting is used. With this information it is possible to
schedule the ACKs at different times in the same micro slot. If the times for the
sending of the first, second and third ACK are fixed (within the same micro slot),
this results in conflict-free transmissions of all acknowledgments. The ACKs could
be ordered by the nodelds of the receivers, so if two nodes with the ids 2 and 4 know

4.3. Mobile Nodes 43

that they both receive a packet from the same node in the same slot, node 2 would
send its ACK first.

According to the design of the routing algorithm, local multicasting can only
occur at specific nodes. If a path creates a new tree, no local multicast can occur.
If a path is attached to an already existing tree, the first node of the path is always
part of that tree. All other nodes of that path cannot be part of the existing tree,
because if this was the case, there would have been a shorter path from the current
destination to the already existing tree, which would have been chosen in the route
discovery phase. Therefore, local multicasting can only occur in the first node of a
path added to an already existing tree.

4.3 Mobile Nodes

Due to the movement of a mobile node, the nodes that are in its communication
and interference range also change over time. If it is assumed, that a node can
move through the whole network, transmissions of the mobile node can potentially
interfere with all other nodes. Also, transmissions of all others nodes can potentially
interfere with receptions of the mobile node. If a mobile node is confined to a certain
area, it may be possible to allow some nodes to transmit together with the mobile
node as long as those nodes are never in its interference range and the mobile node
is never in the interference range of those nodes. In the rest of the thesis, it is
assumed that mobiles nodes can potentially interfere with the communication of all
other nodes, therefore all slots used for communication with a mobile node have to
be blocked in the whole rest of the network, i.e., no SDMA can be used in those
slots.

For future work, it may be interesting to find a way to use SDMA together with
the mobile node. As the geographical position of the mobile is known, it may be
possible to create a dynamic schedule that adapts to the current position of the
mobile node to allow SDMA in those slots for an increased performance.

Section [3.5.3] explained how a mobile node communicates with the rest of the
network through AccessNodes and that it needs to know which AccessNode is
currently active, which is determined by periodic beacon frames of the mobile node.
These beacon frames can be scheduled in the mobile node’s management slot, as
long as it is assumed that it does not interfere with the sending or receiving of
other management packets, such as route requests. If it is assumed that route
requests are relatively rare, the beacon frames can be skipped if a route request is
issued. If multiple AccessNodes receive the requests and all of them forward it, the
MasterNode will be able to detect the duplicate RRP, because the field requestld is
the same in all of them. Also, mobile nodes move at a relatively slow speed (see
Section , so switching from one active AccessNodes to another does not occur
often, i.e., skipping a few beacon frames should usually not lead to problems.
Another possibility is to reserve another management slot for the beacon frames.

44 4. Centralized Timeslot Assignments

4.4 Assessment Criteria for the Schedule

Before introducing the scheduling algorithm, its objectives have to be discussed. The
question that has to be answered is what defines a good schedule. The answer to
this question depends on the application context. A universal solution that applies
to all problems does not exist. One important feature is a low delay. The delay is
defined as the time (in slots) it takes to send a packet from the source to the intended
destination, or — in the case of multicast routing — the time until all destinations
have received the message. Here, it is distinguished between the delay of path and
the delay of a tree (if it has multiple destinations).

A lower bound for the delay of a path is the number of links in it. The worst case
scenario is that every hop is delayed by nearly a whole super slot. This happens
when a link is scheduled in an earlier slot than its preceding link.

For example, if there are 10 dynamic slots and in a path p = (a, b, ¢, d) the slots
are assigned as follows:

Link [a, b] is assigned slot 2, link [b, ¢] is assigned slot 8 and link [c,d] is assigned
slot 4. In this case, the transmission starts in slot 2 of the first super slot and ends
in slot 4 of the next super slot. Since every super slot contains 10 dynamic micro
slots, this leads to a delay of 12 dynamic slots. Here, and in future examples, the
management slots, which would further increase the delay are ignored. As they are
fixed and therefore add the same delay in all cases, ignoring them is not a problem
for the evaluation of a schedule.

The delay of a tree is defined as the time it takes to reach all destinations.

Another useful criterion is the utilization of the slots, which is comparable to
the cost of a route, explained in Section Here, the utilization is defined as the
relation between slots used for sending and receiving and blocked slots. A schedule
with a high utilization has less blocked slots compared to a schedule with a low
utilization. This criterion is useful in networks with a lot of traffic. The more slots
are blocked, the less likely it is to find a schedule for future routes.

The utilization is calculated for the whole schedule as the number of transmissions
plus the number of receptions divided by the number of blocked slots. Slots that are
blocked by multiple transmissions / receptions are only counted once, i.e., choosing
slots that are already blocked in a large number of interference neighbors leads to a
higher utilization. If the utilization is high, a low number of slots are blocked, while
a low utilization means that a relatively large number of slots are blocked.

4.5 Timeslot Assignments for Trees

In the following, the scheduling algorithm will be explained. In Section [£.5.1] no-
tations used by the algorithm will be introduced. Section [4.5.2] explains the basic
algorithm, used for paths that created a new stationary tree. Finally, Section [£.5.3]
discusses the necessary additions to the algorithm needed to handle other scenarios,
such as adding destinations to other trees (local multicast) and handling mobile
nodes.

4.5. Timeslot Assignments for Trees 45

4.5.1 Definitions

The following notations will be used by the scheduling algorithm:
e T'X, is a list of all slots in which node a is scheduled to send
e RX, is a list of all slots in which node a is scheduled to receive
o NX, is a list of all slots in which node a neither sends nor receives
— NX,={z|lx ¢ RX, and x ¢ TX,}

o NX, is a list of all slots where a and b (link from @ to b) neither send nor
receive

— NXpgpy = NX, N NX,
A slot can be scheduled:
e SEND, ;. to send to up to three nodes a,b,c
e RECEIVE, to receive from node a

e BLOCKED to be blocked from sending and receiving. Explicitly marking a
slot as BLOCKED is not necessary for the algorithm, however it is useful to
visualize the results of the scheduling

e the function setSlot(node a, slot i, STATUS) sets the slot i of node a to the
specified STATUS. If a node is already scheduled to send in this slot, the new
receiver is added instead of overridden.

Property 2 can be reformulated to:

o [F'S;,=NX,NNX,

e,

— IF'S, is a collection of all interference free slots of node a. This means
that node a can be scheduled to send or receive in all of these slots.

° [FS(GJ)) =IFS,NIFS,

— IF S,y is a list of all interference free slots of a link (a,b). This means
that the link can be used to send / receive in all of those slots.

4.5.2 Scheduling Algorithm — Creating a New Tree

To explain the principles of the scheduling algorithm as clearly as possible, the
algorithm for the most basic scenario is introduced first. The scenario is that a new
stationary tree has been created and needs to be scheduled.

There are two different scheduling algorithms, which fulfill different objectives.

w o =

N o o e

10

11
12
13
14
15
16
17
18
19

20
21
22
23

25
26
27

28
29
30
31
32
33
34
35

46 4. Centralized Timeslot Assignments

4.5.2.1 Minimizing the Delay

The first algorithm tries to minimize the delay of the added path. The minimal
delay of a path is equal to its number of links. This is achieved whenever successive
links reserve consecutive slots. E.g, if for a path p = (a, b, ¢, d) the slots 2, 3 and 4
are reserved for sending from a, b and ¢, the resulting delay is 3 micro slots, which
is equal to the lower bound. So, to minimize the delay of a path, the procedure
tries to reserve slots for a link that are as close as possible to the slot used for the
preceding link. The slot for the first link of a path depends on the context. For now,
it is assumed that getStartingSlot() returns 0, so that the scheduling starts in the
first slot. The getStartingSlot() function will be further discussed in the following
sections.

/* Assigns slots to a path p, minimizing the delay */
assignSlotsDelay (path p):
/x The scheduling starts in a slot depending on the situation
*
/
currentSlot = getStartingSlot () // for now assumed to be zero
/* go through all links in the path x/
for(1=(a,b) € p) {
/x iterate over all slots and check if the currentSlot
is free in this link x/
i=0
while (i<numberOfSlots A currentSlot ¢ IFSj,y)) {
/* if the current slot is not free, try the
next slot x/
if(currentSlot < numberOfSlots) {

currentSlot = currentSlot +1
}
else {

currentSlot = 0
i++

}
/+ If the while loop is finished, either the

currentSlot is free or all slots where checked x/
if (currentSlot € IFS,y) {
/xreserve slots for sending and receiving */
setSlot (a, currentSlot , SENDy)
setSlot (b, currentSlot , RECEIVE,)
/+* and block the slots in all nodes in the
interference range of the sender and the
receiver x/
for (node x € I,UI)
setSlot (x, currentSlot , BLOCKED)

/+ mext link => start scheduling in the next

slot x/

currentSlot4++

/xcontinue with the next link x/
}
/+ if the currentSlot is not free, no slot was free x/
else{

return(SlotAllocationFailed)
}

36

4.5. Timeslot Assignments for Trees 47

return(ScheduleFound)

The algorithm starts in the first link of the path and the first slot (slot 0) as the
current slot. For every link, it checks if the current slot is free. If the current slot
is free, the algorithm assigns it to the link, i.e., the slot is set to SEND,.cceiver in
the sender and to RECEIVE,,, 4., in the receiver. Additionally, the slot is set to
BLOCKED in all nodes in the interference range of the sender and receiver. If that
is not the case, the next slot is checked. If the end of the slots is reached, it starts
again at the first slot, until all slots are checked. If an interference-free slot is found
for a link, the algorithm continues in the next link of the path. Here, it checks
if the next slot (the one after the slot that was assigned to the previous link) is
interference-free first and then continues as described above. If for any link, no free
slots are found, the algorithm terminates unsuccessfully.

[Slot: [0 [1 [2]3 [4]
node a: | x
e node b: X
node c: | Ry X
node d: | x | R,
node e: X Ry
node f: | x
node g: | x | x
node h: X X
node i:
node j:
node k:
node 1.

Figure 4.1: An example scheduling problem with an already scheduled path from b
to e.

Figure [4.1] shows the starting point of an example scheduling problem. In this
example, it is assumed that the interference range of all nodes is the same as their
communication range. The figure shows a network with an already scheduled path
from b to e and an example schedule for this path. Normally, link [d, ¢] would have
been scheduled in slot 2 instead of three, but it is possible that this slot was blocked
(e.g., by another tree) at the time that the schedule for this path was created.
Now, another route p = (k,7,¢g,h) was discovered and the transmissions for this
route have to be scheduled. The scheduling algorithm starts with the first link [k, 4]
of the path p and checks if the first slot (slot 0) is interference-free in this link. As
slot 0 is free in both nodes, the transmission is scheduled for this slot and blocked
in all interference neighbors of k and i (nodes f, g, 7 and [). The updated schedule
is displayed in Figure 4.2

48 4. Centralized Timeslot Assignments

[Slot: [0 |1 [2[3 [4]

e node a: | x
node b: | S, | x
node c: | Ry | Sy X
noded: | x | R, Se
node e: X Ry
node f: | x
node g: | x | X
node h: X X
node i: | Ry
node j: | x
node k:
node l: | x

Figure 4.2: Continued scheduling example.

Next, the link [7, g] is scheduled. Here, the algorithm starts to search the free
slot in the current slot set in the last step (slot 1). As slot 1 is blocked in node
g, it is not possible to use it. Therefore slot 2 is tested, which is still free in both
nodes. So, slot 2 is chosen for link [7, g]. Node i is scheduled to send to node g and
g is scheduled to receive from 7. All nodes in the interference range of ¢ and g are
blocked, and the current slot is set 3. Figure [4.3|shows the resulting schedule.

[Slot: |0 |1 [2 [3 [4]

e node a: | x
node b: | S, | x
nodec: | Ry | Sg | x | x
noded: | x | R, Se
node e: X Ry
node f: | x X
nodeg: | x |x | R;
node h: X | x |x
node i: | Ry
node j: | x X
node k: | S; X
node l: | x X

Figure 4.3: Continued scheduling example.

In the next step, the last link [g, h] is scheduled in the same way as the previous
links, since slot 3 is blocked in h, slot 4 is used. The final schedule is shown in
Figure [4.4

-

oo W N

4.5. Timeslot Assignments for Trees 49

[Slot: [0 [1 [2 [3 [4]

e node a: | x
node b: | S, | x
nodec: | Ry | Sg | x |x |x
noded: | x | R, Se | x
node e: X Ry
node f: | x X
nodeg: | x |x | R;
node h: X | X |x R;
node i: | Ry, Sy X
node j: | x X X
node k: | S; X
node l: | x X

Figure 4.4: Continued scheduling example.

The transmission from the source k£ to the destination h starts in slot 0 and ends
in slot 4. Therefore, the delay of this path is 5 micro slots. The complete schedule
contains 22 blocked slots and 6 transmissions and receptions, therefore the utilization
of this schedule is 0.54.

4.5.2.2 Maximizing the Utilization

The second version of the scheduling algorithm tries to maximize the utilization of
the schedule as well as increase the chance of finding a schedule for the given and
future routes. To achieve this, 3 Slot Decision Policies (SDPs) are defined, similar
to [28]. The SDPs are slighty different than in the paper, because the MasterNode
has global knowledge of the routes and schedules.

The first policy is to start the scheduling in a link that has the smallest number
of interference-free slots available to increase the chance of finding a schedule for
this path. When scheduling a link that is part of a route, the chosen slot cannot be
used in other links of this route, which are in the interference range of the nodes of
the current link. Depending on the size of the interference range and the length of
the route, most slots can only be used a few times on a route. This way, scheduling
links with a small number of free slots first, increases the chance of finding a feasible
schedule. E.g., a path p = (a, b, ¢,d) has to be scheduled and the link [a, b] has slot
1, 2 and 3, link [b, ¢] has the slots 2 and 3 and link [c, d] has only slot 1 free, then if
slot 1 is scheduled for link [a, b], there are no free slots left for link [c, d]|. Scheduling
the link with the smallest number of free slots first, in this case link [c, d], means
that all links in this example can be scheduled. The following listing shows the
getCurrentLink function which chooses the link according to this policy.

/* Returns the link with the smallest number of interference—free slots
*/
getCurrentLink (path p):
/x Count the number of interference—free slots for all links x/
for (link 1= [z,y] € p) {
if (lalreadyScheduled[1] {

© w N O

10

© ® N O

10
11
12

13

14
15

50 4. Centralized Timeslot Assignments

freeSlots [1] = |[IFS},
}
}
/+ and choose the one with the lowest number of free slots

first =/

return minlndex(freeSlots)

getCurrentLink counts the number of interference-free slots of all links that have not
been scheduled yet and returns the one with the smallest number of free slots.
After a link has been selected, a slot for this link has to be chosen. Here, the first
heuristic is a least conflict first policy. If several slots are free, slots that have the
least conflict with other, not already scheduled, links of the route are preferred. E.g.,
in an example path d = (a, b, ¢, d), link [a, b] has slot 1 and 3 and link [b,] and link
[c, d] both have slots 1 and 2 free. As all links have the same number of free slots,
the scheduling starts in link [a,b]. If slot 1 is scheduled for link [a,b], it can not
be reused for the other links. Since both other links have only one other free slot
(2), no feasible schedule can be found. Applying the least conflict first policy, slot
3 is chosen for [a, b], because slot 1 is free in two other links of the route, while slot
3 is not free in any other links. This way, a feasible schedule can be found. The
following listing shows the getLeastConflictSlots function that applies this policy.

/* Returns the free slots of the currentLink, that have the least
conflict with the rest of the route x/
getLeastConflictSlots (path p, link currentLink = [a,b]) {
/x iterate over all interference—free slots of the currentLink
*
/
for (slot i EIFS[a,b]) {
/+* and count how often it is free in all other, not
already scheduled, links of the route x/

for(link I=[z,y] :p){
if (!alreadyScheduled[1] A i €IFS,,) {
count [i]++
}
}
}
/x return all slots that have minimal conflict x/
/x it is possible that several slots are free in the same
number of links x/
return allMinIndex (count)
}

getLeastConflictSlots counts how often the free slots of the current link are free in
other, not scheduled, links of the route and returns the slot that is free the least
number of times in them. If there are still multiple slots available, it returns all of
them.

The last heuristic tries to minimize the utilization of the schedule. If a slot is
already blocked in a large number of nodes in the interference range of a node,
transmitting in this slot will lead to less additional blocked nodes and therefore
increase the utilization of the schedule, which leads to an increased chance of finding
feasible schedules for other routes. This most reuse first heuristic is shown in the
following:

oo W N —

© 0 N O3

10
11
12
13
14

© 3] ~ [S W [N —

10
11

12

13

14
15
16
17

18
19
20
21
22
23
24

4.5. Timeslot Assignments for Trees 51

/* Returns the slot that is blocked in the most interference mneighbors
of the current nodes x/
getMostReusedSlot (link currentLink = [a,b], list remainingSlots) {
/% iterate over all remaining Slots x/
for (slot i : remainingSlots) {
/+ and count how often the slot is free in all
interference neighors x/
for (node z € I, UI){
if(i €IFS;) {
count [i]++
}

}
}
/% choose and return the slot that is free least often */
return minIndex (count)

}

getMostReusedSlot counts how often a slot is free in all interference neighbors of
sender and receiver of the current link and returns the slot that is free the smallest
number of times, i.e., the slot that is blocked the most.

These three principles are combined to form an algorithm that has a high chance of
finding a schedule and maximizes the utilization, so that scheduling following routes
is easier:

/* Assigns slots to a path p, mazimizing the Utilizationx/
assignSlotsUtil (path p): {
/x Continue scheduling until all links are scheduled x/
for (i=0; i < |p|: i++) {
/x determine the link with the least available slots x/
currentLink = [a,b] = getCurrentLink (p)
/* if no slots remain, the scheduling failed x/
if ([IFSqyl = 0) {
return(SlotAllocationFailed)
}

/+ otherwise, determine the chosen slot according to
the least conflict and most reused first policies
*
/
leastConflictSlots = getLeastConflictSlots (p,
currentLink)
chosenSlot = getMostReusedSlot (currentLink ,
leastConflictSlots)
/xreserve the chosenSlot for sending and receiving x/
setSlot (a, currentSlot , SENDy)
setSlot (b, currentSlot , RECEIVE,)
/+ and block the chosenSlot in all nodes in the
interference range of the sender and the
receiver x/
for(node x € I,UI)
setSlot (x, currentSlot , BLOCKED)
/x and mark the currentLink as scheduled x/
alreadyScheduled [currentLink] = true

}

return(ScheduleFound)

52 4. Centralized Timeslot Assignments

assignSlots Util schedules slots for a given path p according to the policies explained
previously. If a slot is found, it is reserved for sending and receiving and blocked in
all nodes in the interference range of sender and receiver. The scheduling fails if one
of the links has no free slot left and is successful if all links are scheduled.

Figure [4.5| and following, show an example of this scheduling algorithm. The
starting point for this example is a network with two already scheduled paths as
shown in Figure It is assumed that the communication range of all nodes
corresponds to their interference range.

[Slot: [0 [1 |2 [3 [4]
node a: | x
node b: X
node c: | Ry X
node d: | x | R,
node e: X Ry
node f: | x
node g: | x | x
node h: X X
node i: X

node j: X

node k: R,
node 1.

Figure 4.5: The starting point of a scheduling example for assignSlotsUtil.

Now, the links for another path p = (k,4,g,h) have to be scheduled. The first

step of the algorithm is to count the number of interference-free slots for all links
on the path. Here, link [k,i] has four interference-free slots. Link [i, g] has two
interference-free slots, because node g is blocked in two slots and node ¢ is blocked
in another slot. Link [g, h] also has two interference-free slots, because at least one
of the nodes is blocked in three slots. Therefore, the algorithm starts allocating slots
in link [z, g].
The next step (least conflict first policy) is to count how often the free slots of link
[i, g] are free on other links of the route. Slot 3 is free in link [k,], but is blocked in
node h and therefore not free in link [g, h]. Slot 4 is free in both other links of the
path. According to the least conflict first policy this means that slot 3 is chosen for
this link. Since there is only one slot left at this point, the most reused first policy
is not needed. Therefore, slot 3 is scheduled to send resp. receive in nodes ¢ resp.
g and blocked in all of their interference neighbors (nodes ¢, f, h, j, k and [). The
updated schedule is shown in Figure 4.6

4.5. Timeslot Assignments for Trees 53

[Slot: [0 [1 |2 [3 [4]

e node a:
node b: | S, | x
node c: | Ry | Sy X
noded: | x | R, Se
node e: X Ry
node f: | x X
node g: | x | X R;
node h: X X
node i: X
node j: X | x
node k: R | x
node 1. Sk | x

Figure 4.6: Continued scheduling example.

Next, the interference-free slots of the remaining links have to be counted. Link
[k,] has three interference-free slots left and link [g, h] has two free slots, so link [g, h]
is chosen. Again, the least conflict first policy has to be applied. Slot 2 is blocked
in link [k,], while slot 4 is free. So, slot 2 is chosen for this link and scheduled and
blocked accordingly. The resulting schedule is shown in Figure |[4.7]

[Slot: [0 [1 |2 [3 [4]

e node a:

node b: | S, | x

nodec: | Ry | Sy | x | x
noded: | x | R.|x | S,
node e: X Ry
node f: | x X
node g: | x | X R;
node h: x | Ry |x
node i: x| Sy
node j: X | x
node k: R, | x
node I: Sk | x

Figure 4.7: Continued scheduling example.

After this, only link [k,7] has to be scheduled. Three slots are still free in this
link. Applying the least conflict first policy is unnecessary, because there is no other
link to be scheduled. Therefore, the most reused first policy is applied. It is counted
how often the free slots (slot 0, 1 and 4) are free in the interference neighbors of
nodes k and i (nodes f, g, j and [). Slot 0 is free in two of them, slot 1 is free in
three of them and slot 4 is free in all of them. According to the most reused first
policy, this means that slot 0 is chosen. The final schedule is shown in Figure [4.8|

54 4. Centralized Timeslot Assignments

[Slot: [0 [1 [2 [3 [4]

e node a:

node b: | S, | x

nodec: | Ry | Sy | x | x
noded: |x | R.|x | S,
node e: X Ry
node f: | x X
nodeg: | x | x |5, | R;
node h: x | Ry |x
node i: | Ry x |5
node j: | x X | X
node k: R | x
node l: | x SE | x

Figure 4.8: Continued scheduling example.

The resulting delay for a transmission from £ to h is 8 micro slots, because it starts
in micro slot 0 of one super slot and ends in micro slot 2 of the next super slot. There
are seven transmissions and receptions and 19 blocked slots in the schedule, therefore
the utilization of it is %7 = 0.74.

4.5.3 Scheduling Algorithm — Additions
4.5.3.1 Adding a Destination to a Tree

Section explained that whenever a path is added to an existing node, local
multicasting can occur in the first node of path. Therefore, whenever a destination
is added to tree, the scheduling has to be altered for the first node on the added
path.

The first step is to determine in which slot the first node is scheduled to send
in this tree. It has to be distinguished between transmissions that belong to the
current tree and transmissions from the same node that belong to another tree.
After identifying the right transmission, the number of nodes scheduled to receive
this transmission has to be counted.

If there are less than three receivers, local multicasting can be used. In that case,
the receiver (second node of the first link of the added path) has to be scheduled to
receive in the right slot (the slot in which the first node sends the transmission) if
possible. The new receiver may already be blocked in that slot by a transmission
of another node that is not part of the local multicast. If the slot can be used,
all nodes in the interference range of the receiver have to be blocked (unless they
are also receivers). At this point, the nodes in interference range of the sender are
already blocked.

Additionally, if using assignsSlotsDelay, the getStartingSlot function has to be al-
tered. The currentSlot value has to be set to the slot directly after the one in which
the first node sends, so that the scheduling of the rest of the links continues to min-
imize the delay.

If there are already three receivers or the new receiver is already blocked in the rele-

© o N 3 Ot s W N =

= e e
w N = O

14
15
16
17
18
19
20

4.5. Timeslot Assignments for Trees 55

vant slot, no local multicasting can be used. In this case, the currentSlot has to bet
set to the slot in which the first node is scheduled to receive in the existing tree, so
that the scheduling continues as usual (in the slot directly after the slot used in the
previous link). In the assignsSlotsUtil function, the available slots are determined
independently for all links, and so only the first link has to be scheduled differently.

4.5.3.2 Scheduling Including Mobile Nodes

Scheduling a tree that contains a mobile node is treated as a different case. There are
two ways, in which including mobile nodes changes the scheduling algorithm. The
first difference occurs in the slot used for the communication between AccessNodes
and a mobile node. Another addition to the algorithm is needed for the path from
the AccessNodes to the DistributorNode in a tree with a mobile node as the source.

Scheduling the Slot from AcceessNodes to Mobile Node

Scheduling the slot for communication between a mobile node and AccessNodes is
different, because — as explained in Section [£.3]- SDMA cannot be used for this slot.
Therefore, the scheduling algorithm has to be altered:

assignMobileSlot (node mobile): {
/+ go through all slotsx/
for (currentSlot < numberOfSlots) {
/x if the slot is free in all nodes x/
if (currentSlot GIFSa|aeG){
/% reserve it for sending in the mobile node x/
setSlot (mobile ,currentSlot ,SENDy,ccessnNodes)
/+ and for receiving in all AccessNodesx/
for (node an :AccessNodes):{
setSlot (an, currentSlot ,RECEIVE,,opilc)
}
/+ and block it in all other nodes x/
for (node x : network
G A x ¢ AccessNodes A x! = mobile) {
setSlot (x, currentSlot ,BLOCKED)
}
return (ScheduleFound)
}
}
return(SlotAllocationFailed)
}

Since no SDMA is used, the used slot has to be free in all nodes of the network and
is scheduled to send from the mobile node to all AccessNodes. If the mobile node is
the receiver, all AccessNodes schedule the used slot for transmitting and the mobile
node schedules this slot for receiving. The first slot that is completely free can be
used regardless of the scheduling strategy for the rest of the tree. For the utilization
it does not matter which slot is chosen, because the number of nodes being blocked
is the same in all completely free slots.

In the assignSlotsDelay function for a path with the mobile node as sender, all
other links will be scheduled after this link and the delay will be minimized as much
as possible. If the mobile node is a receiver, then all other links have already been

56 4. Centralized Timeslot Assignments

scheduled, which means that the first slot that is still completely free is later than
the slots used for the previous links.

Scheduling Paths involving a Mobile Node

Besides scheduling the slot for the link from the AccessNodes to the mobile node,
the scheduling for the trees involving a mobile node has to be discussed. The first
case is trees with the mobile node as a destination. As explained in Section
these trees are essentially stationary to stationary trees with the AccessNodes as
destinations. Therefore, besides the last hop from AccessNodes to the mobile node
(explained in the previous section), the scheduling is the same as the scheduling for
purely stationary trees and will not be discussed in detail.

Additionally, there are trees with a mobile node as the source, which is the case
when nodes subscribe to a service published by the mobile node. In Section it
was explained that the trees are a bit different in this case, because only one branch
of this tree can be active at any time. Therefore, different branches can never
interfere with each other. All of them can, however, interfere with communication
from other trees. This leads to a different scheduling strategy, because the usual
strategies would be ineffective.

The scheduling starts in one of the branches, using one of the algorithms for
stationary trees. However, while checking if the a slot is free, transmissions from
other branches of this tree are treated as non existing. This means, if a slot is
blocked, it has to determined whether it is blocked by a transmission from a node in
another branch of this tree or by a node from this branch or a completely different
tree. If the slot is blocked by a transmission from another branch of this tree, and
only from this transmission, it can be treated as free, because this transmission will
never occur when current branch is active. If it is blocked for other reasons, it is not
free.

For the slot assignments, the assignSlotsDelay and assingSlotsUtil function can
be used, with the additions explained above. This can, but does not necessarily,
lead to the same used slots in all branches.

The order in which the paths are scheduled is not important in this case, because
the schedules do not depend on each other. Local multicasting will never be used
here, because all routes are essentially unicast routes.

The tree from the DistributorNode to the rest of the destinations is scheduled as a
stationary multicast tree. If using the assignSlotsDelay function, the starting delay
should be set to the first slot, after the latest slot in which the DistributorNode is
scheduled to receive from one of the branches from the tree from the AccessNodes
to itself, so that the delay from all AccessNodes to all destinations is as small as
possible.

4.5.3.3 Scheduling Multiple Trees

One point that has not been discussed up to now, is if the scheduling should change
if there are already existing trees in the network. The main point of interest is, in
which slot the scheduling starts in this case. Using assignSlotsDelay the scheduling
of a new tree currently starts in slot 0. If there is no other tree in the network, this

4.5. Timeslot Assignments for Trees 57

will continue to be the case. However, as soon as there is another tree, it is possible
to start scheduling in the first slot after the last slot of the existing tree. In that
case, the resulting delay will usually be shorter, because there normally will be more
completely free slots in a slot region that is not used thus far. This is a heuristic,
because it is possible that the trees do not interfere with each other anyway e.g.,
when two trees are in completely different regions of the network. Therefore, it is
possible that starting the scheduling in a slot later than the slots used by the other
trees in the network, does not yield an advantage. In relatively small networks
where a transmission often interferes with nearly all nodes in whole network, that
should rarely be the case.

58

4. Centralized Timeslot Assignments

Chapter 5

Evaluation

To evaluate the presented algorithms, the route discovery and slot scheduling func-
tionalities from Chapters [3| and (] were implemented as a stand-alone C++ appli-
cation. The network has to be pre-configured as a number of nodes with their
communication and interference links. The topology is fixed and for mobile nodes,
the AccessNodes have to be specified.

The input of the application is the source and destinations of a multicast tree
as well as the total number of micro slots available. All presented algorithms and
functions can be applied to the paths of the trees. It has to be decided which route
discovery and scheduling algorithms should be applied to which trees / branches.
Nodes can be used to create a new tree with one source and destination. Other
destinations can be added to this tree or the scheduling can be applied to one of
the paths in the tree. The scheduling has to be applied to the paths in the order in
which they have been added to the tree, to obtain correct results. This is necessary,
because the first node on all but the first path is scheduled differently from the rest
of the nodes (see Section [4.5.3.1). The route request and route confirm phase are
not simulated, neither is the data traffic on the generated routes.

The output of the application is a graph, generated with the igraph package [1]
for R [3] and the corresponding schedule in LaTeX [2] table format. Additionally,
the values needed for the evaluation according to the assessment criteria given in
Sections|3.1|and [4.4] are returned. This includes the number of hops in a tree (taking
multicasting into account), the length of the individual paths and the distance from
the destinations to the source (using the paths in the tree). Also, the utilization
of the schedule and the delays for each destination can be produced. The cost of
a path, as defined in Section , is not needed anymore, because (while used to
discuss the trees) it is replaced by the utilization of the complete schedule.

5.1 Evaluation Setup

To evaluate the algorithms, two different network topologies are used. The first
(left side in Figure represents a general network, where the nodes and links are
relatively evenly distributed.

The second topology is a 3-hop connected 1-hop dominating set, a possible result
of the clustering algorithm mentioned in Section Here, the nodes are

60 5. Evaluation

Figure 5.1: The two topologies used for the evaluation. A general network with out
a special topology (1.) and a second topology that forms a 3-hop connected 1-hop
dominating set (r.)

cluster heads, the nodes are gateways and the rest of the nodes followers.
From a functional point of view, the blue nodes could represent a set of Reduced
Functional Nodes. In this topology, all RFNs are connected to a single other node,
i.e., they can only be part of a route, if they are the source or a destination. This
could be useful in some application contexts, e.g., if the RFNs are battery powered,
because they will use less energy if they are not part of other routes.

In the following experiments, it is always assumed that the interference range of
nodes contains all nodes in the communication range of their neighbors. This means
that, especially in the first topology, the interference between nodes is high, i.e.,
nodes have a lot of other nodes in their interference range. For example, if node
8 sends to node 13 in network topology 1 (and node 13 replies with an ACK), all
nodes except nodes 15 and 19 will be blocked in the used slot.

The first topology was chosen to evaluate the algorithm for general networks with
evenly distributed nodes. In the second topology, the interference between nodes is
generally lower and the average distances between nodes is higher, e.g., the network
diameter is five in topology 1 and eight in topology 2. The second topology was
chosen to evaluate the algorithms on networks fulfilling the clustering properties
from the problem description in Chapter

In addition to the stationary nodes, mobile nodes will be added to the network
in some experiments, which means that some nodes will be chosen as AccessNodes
and one node as the DistributorNode.

5.2 Evaluation Scenarios

To evaluate the general performance of the presented algorithms, 50 randomly gen-
erated scenarios for stationary trees were created. Every scenario contains three

5.3. General Performance 61

stationary multicast trees with one source and three different destinations. The dif-
ferent trees in one scenario can contain the same nodes. These scenarios are used
to compare the general performance of the different route discovery and scheduling
algorithms (see Section to each other in completely stationary networks. Both
network topologies use the same scenarios.

Another important parameter for the evaluation is the number of micro slots in
every super slot. If more slots are available, finding a feasible schedule is easier,
e.g., if there are more completely free slots available than transmissions needed in
a tree, finding a schedule is guaranteed. As the objective of some of the functions
is to increase the chance of finding a feasible schedule, the number of micro slots is
variable and depends on the experiment.

In addition to those general performance evaluations, some experiments (e.g., the
evaluation of the AccessNodes) will only contain a single scenario and the results of
the route discovery and scheduling of this scenario will be examined in detail.

5.3 General Performance

The different algorithms for the route discovery and scheduling phase can be grouped
into algorithms that minimize the delay and algorithms that increase the utilization
and chance of finding a feasible schedule. Therefore, two setups of route discovery
algorithms combined with a scheduling algorithm are used to evaluate the general
performance.

e minDelay: This setup aims at minimizing the delay of the individual paths
of each tree as much as possible. To achieve this, the tree is created with
createNewTreeDegree (Section [3.5.1). New destinations are added with ad-
dDestToTree (Section [3.5.2), which chooses the path with the highest degree,
if there are multiple shortest paths to the tree with the same distance to the
root. Finally, the slots are allocated with assignSlotsDelay (Section .
All of these functions aim at creating a tree with short paths and allocate
slots, so that the resulting delay is minimal. The scheduling of new trees al-
ways starts in slot 0 for the first two experiments. The alternative, to start in
the slost after the last slot used in the previous tree, will be tested too (see

Section |4.5.3.3)).

e maxUtil: In this setup, the utilization and the chance of finding a feasible
schedule is maximized. For the tree creation createNewTree (Section
is used. The threshold for the getMinNumberOfFreeSlots function is set to
three, as a compromise between increasing the chance of finding a schedule
and minimizing the utilization of it. To add a destination, addDestToTree
(Section is used (using the number of free slots to choose one of the
shortest paths with minimal distance to the root). For the slot allocation,
assignSlotsUtil (Section is used to further increase the chance of finding
a schedule.

The first set of the experiments will evaluate the performance of the algorithms
on stationary multicast trees. The algorithms of both setups are executed for all 50

62 5. Evaluation

scenarios for both network topologies and the average utilization of the schedule and
the average delay from source to each destination are used to evaluate the quality
of the results of both setups. In addition to that, the number of scenarios in which
the algorithm finds a feasible schedule is examined.

As a starting point in Section the number of micro slots is set to 15. In
Section the same experiment is done with a lower number of micro slots (12
and 10) and Section [5.3.3|examines the effect of the starting slot for assignSlotsDelay
with 15 and 12 micro slots.

5.3.1 Delay and Utilization

For the first evaluation, the number of dynamic micro slots per super slot is set to
15, so that both setups find a feasible schedule in all scenarios. Table [5.1] shows the
results of this experiment for network topology 1 and Table 5.2/ shows the results for
topology 2.

‘ Network Topology 1 H avg. util ‘ avg. distance ‘ avg. delay ‘ # found Schedules ‘

minDelay 0.21£0.02 | 2.76 £ 1.23 3.6 +2.25 | 50

maxUtil 0.22+0.02 | 274 +£1.24 6.06 = 6.39 | 50

Table 5.1: The results of the first experiment with 15 micro slots for network
topology 1.

] Network Topology 2 H avg. util

‘ avg. distance ‘ avg. delay

‘ # found Schedules ‘

minDelay

0.29 £ 0.01

3.99 £ 2.21

5.7+ 4.34

20

maxUtil

0.31 £0.01

3.99 £2.21

11.22 £11.15

20

Table 5.2: The results of the first experiment with 15 micro slots for network
topology 2.

The value avg. util shows the arithmetic mean and standard deviation of the
utilization of the found schedules. The value avg. distance shows the average
distance (in links) from the source to a destination in a tree (this is not necessarily
the same as the distance in the network).The value avg. delay shows the mean
and standard deviation of the delay to each individual destination. The value #
found Schedules gives the number of scenarios in which the setup found a feasible
schedule.

Both, average utilization and delay are higher in network topology 2. This is
caused by the longer paths and — generally — less nodes in the interference range of
each node in topology 2. The longer paths are also confirmed by the greater average
distance from source to destination in topology 2.

There is a large difference in the average delay between the two setups. In the
maxUtil setup, the average delay of the paths is roughly two times as long as in the
manDelay setup. In both topologies, the standard deviation in the mazUtil setup is
nearly three times as big as in the minDelay setup. The rather large difference in

5.3. General Performance 63

Figure 5.2: An example for the minimum delay of a tree.

delay is not surprising, because assignSlotsDelay is aimed at minimizing the delay,
while assignsSlotsUtil ignores the delay completely. The high standard deviation of
the delay for the mazUtil setup shows that the delay in this setup is not only high,
but also hard to predict. Therefore, for time-critical tasks the allocateSlotsDelay
function may be the better choice.

In the minDelay setup, the average delay is about one or two slots higher than
the average distance. In Section it was explained that the minimum delay of a
path is its number of links, which is the same as the distance from the source to the
destination. The fact that the delay is higher than the distance can be explained as
follows.

Consider the following example of a tree (c,b,a,d, e), also shown in Figure
Here, it is assumed that node a is the source, and nodes ¢ and e are destinations
of a tree. In the first free slot node a can send to nodes b and d (local multicast).
But in the second free slot, both nodes b and d can not send together, because
they are in each others interference range (which was assumed to contain the 2-hop
communication range). So, the delay is 2 for one of the paths and 3 for the other
path in the best case. This situation will obviously occur often in trees. Another
increase in delay is probably caused by the starting slot for the scheduling with
assignSlotsDelay, which is set to slot 0 in this experiment, i.e., it is possible that
the first few links in a path are scheduled in a different slot region than the later
slots, as explained in Section [£.5.3.3] Tt is expected, that the delay is shorter if the
scheduling starts in the slot after the last slot used for the previous trees. This will
be confirmed in Section [(.3.3l

There is no large difference in the average utilization of the schedules for the
different setups in both topologies. The mean utilization of the schedules differs by
less then 10% and the standard deviation is nearly the same in both setups. This
indicates that both strategies block more or less the same number of slots with their
transmissions. A likely reason for this is that the trees from the different route
discovery algorithms are usually very similar to each other. All route discovery
algorithms aim at reducing the number of links in the added paths, and they only
produce different results if there are multiple shortest paths that also have the same
distance to the source of the tree. The nearly equal average distance in both setups

64 5. Evaluation

also indicates that the created trees are very similar. This can be further confirmed
by examining the average number of links (taking local multicast into account) or
the average length of the paths added to a tree, which are nearly the same in both
setups (e.g., the average number of links in trees in topology 1 is 4.45 and 4.38 for
the two setups). As the created trees are so similar in both setups, these values
have been omitted from the tables. Another reason for the low difference in the
utilization is that during the slot allocation, maximizing the utilization is only one
of the applied policies of the assignSlotsUtil function. The other policies are mostly
used to increase the chance of finding a feasible schedule.

Furthermore, the example networks are relatively small and the interference be-
tween nodes is relatively high. Therefore, a transmission in a slot blocks this slot
in a lot of other nodes. So, the number of slots that can be reused is generally low.
This may be a reason for the bigger difference in utilization in topology 2, which has
less interference. However, as the difference is still small this not enough to draw a
general conclusion.

5.3.2 Lowering the Number of Micro Slots

To further assess the effectiveness of the presented algorithm, the experiment was
repeated with a lower number of micro slots per super slots, which was set to 12 for
the next experiment. Tables[5.3]and [5.4]show the the results of the same experiment
with a total of 12 micro slots.

Network Topology 1 H avg. util ‘ avg. distance ‘ avg. delay ‘ # found Schedule

minDelay 021£0.02 | 2.74+1.24 3.63 2.5 |46

maxUtil 0.22£0.02 | 273+ 1.23 5.35 £5.08 | 48

Table 5.3: The results of the experiment with 12 micro slots slots for topology 1.

Network Topology 2 H avg. util ‘ avg. distance ‘ avg. delay ‘ # found Schedule

minDelay 0.3x=0.01 | 3.63%2.06 5.36 £5.14 | 26

maxUtil 0.31£0.01 | 3.96 & 2.22 9.08£8.34 | 45

Table 5.4: The results of the experiment with 12 micro slots slots for topology 2.

The difference in delay in the two setups (both mean and standard deviation) is
slightly smaller in this case, but still there. Scheduling a transmission before the
slot used in the previous link does not increase the delay as much as in the previous
experiment, if there are less micro slots per super slot. This is more noticeable in
the mazUtil setup, because used slots are determined without taking preceding links
into account. An outlier in this experiment is the average distance in the minDelay
setup in network topology 2. This is probably because of the low number of found
schedules. Here, assignSlotsDelay can only find a schedule in small trees, and if only
small trees are examined, the average distance will be lower. If the average distance
would be calculated for all trees, even those in which no schedule was found, it would

5.3. General Performance 65

be the same as in the previous experiment, because the trees do not depend on the
total number of micro slots available (in this setup).

Here, the main point of interest is the number of found schedules. In both topolo-
gies, the assignSlotsUtil function finds more feasible schedules. In fact, it finds a
schedule in 48 (45) of the 50 scenarios, compared to the 46 (26) scenarios in which
the assignSlotsDelay function finds a feasible schedule in topology 1 (2). In the as-
signSlotsDelay function, no effort to increase the chance of finding a feasible schedule
is made. Essentially, every link is assigned the first slot that is free in both sender
and receiver. Compared to this, assignsSlotsUtil has two policies to increase the
chance of finding a feasible schedule for a route, which were explained in Section
The results show that the policies actually increase the chance of finding a
schedule, as expected.

This trend continues when the number of slots is lowered further. For a total of
10 micro slots per super slot, assignSlotsUtil finds a feasible schedule in 27 scenarios
in network topology 1, while assignSlotsDelay finds a feasible schedule in only 22 of
the scenarios.

A conclusion so far is, that the minDelay setup is better for networks with low
traffic (or a large number of free micro slots), because mazUtil yields only a small
increase in utilization, but results in a higher delay and higher variance in delay. For
networks with a small number of micro slots — or a lot of traffic — the mazUtil setup
is better, because the chance of finding a feasible schedule is increased compared to
the minDelay setup.

5.3.3 Scheduling Multiple Trees

For the assignSlotsDelay function, several (different) options for the starting slot of
each tree were given. One option, which was used in the previous examples, is to
start every new tree in slot 0. Another option is to start scheduling the new tree in
the slot directly after the last slot used in the previous tree. The different options
will be evaluated in the following.

Tables [5.5| and show the results of minDelay, starting the slot allocation of a
new tree directly after the last slot of the previous tree, with a total number of 15
resp. 12 micro slots.

‘ minDelay H avg. util ‘ avg. distance ‘ avg. delay ‘ # found Schedule ‘

topology 1 || 0.2+ 0.01 | 2.73+1.21 3.02+1.39 | 48
topology 2 || 0.29 £0.01 | 3.88 & 2.18 5.03 £4.57 | 43

Table 5.5: Results of assignSlotsDelay, when starting the scheduling in the slot after
the last slot used in the previous tree and a total of 15 micro slots.

66 5. Evaluation

’ minDelay H avg. util \ avg. distance \ avg. delay \ # found Schedule ‘

topology 1 || 0.24+0.02 | 2.66 £ 1.21 3.06+1.74 | 38
topology 2 || 0.3 £0.01 | 3.41 £2.17 4.71£4.56 | 11

Table 5.6: Results of assignSlotsDelay, when starting the scheduling in the slot after
the last slot used in the previous tree and a total of 12 micro slots.

Compared to the previous results (e.g., Table , the average delay is slightly
lower. If the total number of micro slots is 15, the avg. delay for network topology
1 is lowered from 3.6 to 3.02. However, the number of scenarios in which a suitable
schedule is found is lowered, too (from all 50 to 48). The same is true for topology
2, where the delay is lowered from 5.7 to 5.03, while a schedule is only found in 43
instead of 50 scenarios. The reduced chance of finding a schedule is more noticeable
if there are less micro slots in general. If there are only 12 slots, the number of
scenarios in which a schedule was found is reduced from 46 (26) to 38 (11) for
topology 1 (2). The results are as expected. By starting the scheduling in a later
slot, transmissions that would normally fit in earlier slots are now scheduled in a
completely free slot. As long as the rest of the nodes on the paths still fit in the
schedule, the delay will often be lower, but by ignoring some free slots (which may
not be free in other links of the route) that are in the already used part of the
schedule, the chance of finding a schedule is lowered.

5.4 Mobile Nodes as Destination

The mobile nodes communicate with the rest of the network through the Ac-
cessNodes (see Section [3.5.3)).

A rather simple approach to reach the mobile node would be to create a route and
schedule to all other nodes in the network (i.e., set all nodes as AccessNodes). To
assess the general effectiveness of the AccessNodes, the tree from a source to all
other nodes is compared to the tree from the same source to all AccessNodes.

5.4. Mobile Nodes as Destination 67

Figure 5.3: A multicast tree to all other nodes (l.) and a multicast tree to all
AccessNodes (r.).

Figure [5.3| shows the multicast tree from a source to all other nodes on the left
side and the tree from the same source to all AccessNodes on the right side. The
trees, and following schedules, were created with the setup minDelay, explained in
the previous sections. Table shows the schedule for sending to all other nodes,
while Table [5.8] shows the schedule to reach all AccessNodes. As expected, the
difference in the schedules is huge. Significantly less slots are needed to reach the
AccessNodes, compared to reaching all other nodes. Even moving the AccessNodes
further away from the source would not lead to a large change in the schedule. E.g.,
node 16 could transmit in slot 0 and 1 or node 7 could send to node 6 in slot 4
or 5, to reach AccessNodes that are further away from the source, without many
additional blockings. The maximum delay to reach all other nodes is 11 micro slots
for the path from node 3 to node 20 and a total of 128 slots are blocked in this case.
On the other hand, when using the AccessNodes the maximum delay is 6 micro slots
for the path from node 3 to node 16 and only a total of 69 slots are blocked.

As the difference in used slots and delay is so large, doing more experiments for

this case is unnecessary. It is obvious that using AccessNodes leads to significant
advantages for mobile multicast trees.
However, the schedule to reach all nodes (Table can be used to point out the
effectiveness of local multicasting. Local multicasting is used in four nodes, saving
a total of five transmissions in every super slot. Without local multicasting, no
schedule could be found in this example, because, e.g., node 8, which sends to three
receivers in slot 4 has no other free slot left.

Another property of local multicasting can be seen in node 1. Node 1 sends to
nodes 6 and 7 in this example, but can not use local multicasting, because node 7
is blocked in slot 2 by the transmission from node 4 to node 5 in the same slot.

68 5. Evaluation

[Sot: |0 1 [2 |3 [4 E 7 18 |9 |
Node 1: | x Rs X X X
Node 2: | Rs3 X | X X X X X
Node 3: X X | x X
Node 4: | Ry | x X X X X X
Node 5: | x X Ry X X X
Node 6: | x X R | x X X X X
Node 7: | x X X Ry | x X X X X
Node 8: | x Ry | x X X X X X X
Node 9: | x X X | X Ry X X X
NodelO: | x X X Ry | x X
Nodell: | x X X | X X Ry X X
Nodel2: | x X X X X X R X X
Nodel3: | x X X | X Rg X X X X
Nodel4: | x X X X Rg X X X X
Nodelb: | x X X X Ry X X
Nodel6: | x X X X Rio | x X
NodelT: X X X X X Ris | x
Nodel&: | x X X X X X X Ry
Nodel9: | x X | X X Rio X X
Node20: | Ry X X X X X X

Table 5.7: The schedule for the multicast tree from one source (3) to all other nodes.

[Slot: [0 [1 |2 13 |4 [5 [6]7]8]9]
Nodel: | x |x |x
Node 2: | R3 X X
Node 3: X | X
Node 4: | x X | X e
Node 5: | x X | X X
Node 6: | x |x |x
Node 7: | x | x | Rg X
Node 8: | x Rs X X X
Node 9: | x | x | Rg X X
Nodel0: X | X e X
Nodell: X X X
Nodel2: X X X X X
Nodel3: | x X | X X X X
Nodel4d: | x | x | Rg X X
Nodel5: X X X
Nodel6: X X Ry
Nodel7: X | X X Ris
Nodel8: X | x Ry X
Nodel9: X X X X
Node20: X X X

Table 5.8: The schedule for the multicast tree from one source (3) to all AccessNodes.

5.5. Mobile Nodes as Source of a Tree 69

5.5 Mobile Nodes as Source of a Tree

Another important case are trees with the mobile node as the source of a transmis-
sion. In this case, the data is sent from the AccessNodes to the DistributorNode,
with a specialized scheduling strategy, in which the different branches of this tree
can be scheduled in the same slots. The different branches of the tree are never
active at the same time as explained in Section [3.5.3.2l To show the advantages of
this scheduling strategy, a tree from the AccessNodes to the DistributorNode is first
scheduled with the normal strategy (although without multicasting) and then with
the algorithm that was proposed for this case.

Figure 5.4: A multicast tree from all AccessNodes to one DistributorNode (6).

Figure[5.4]shows the multicast tree from the AccessNodes () to the Distrib-
utorNode 6. The DistributorNode was chosen with the getDistributorNode function,
i.e., node 6 has the lowest average distance to all other nodes. As this node is re-
sponsible to forward all traffic from the mobile nodes to the rest of the network, this
will — on average — lead to shorter paths from one AccessNode to any other node of
the network.

The right schedule in Table[5.5 was created by the specialized algorithm developed
for this case. In this schedule, nodes from the different branches of the tree are
allowed to send / receive in the same slots, because they will never be active at the
same time. For example, nodes 8 and 14 are both scheduled in slot 0, even though
they, and their receivers, are in each other’s interference range. Also, node 6 is
scheduled to receive from nodes 7 and 11 in slot 2. Again, this is possible because
these nodes will never send concurrently.

70 5. Evaluation

[Slot: [0 [1 [2 [3 [4 [5 |6 | [Slot: [0 [1 [2
Node 6: | Ry; | x R, | x X R | Ry Node 6: | Ry | R7 | R7 11
Node 7: | x Rg X Ris X Node 7: | Ry | Rig
Node 8: | x X X X X X Node 8: X X
Node 9: X X | x X X Node 9: | x X X
Nodel0: X X | x X X NodelO: | x X X
Nodell: X X Rio | x X Nodell: Ry
Nodel2: | x Rig | x X X Nodel2: | Ryg X
Nodel3: X X Nodel3: | x X
Nodel4: X X X X Nodel4: X X
Nodel5: X X Nodelb: | x X
Nodel6: | x X X Nodel6: X X
NodelT: X X Nodel7: | x X
Nodel8&: | x X X Ry X X Nodel8&: | Ry X

Figure 5.5: The resulting schedules for the tree from the AccessNodes to the Dis-
tributorNode.

The left schedule is scheduled with the normal scheduling strategy, in this case
assignSlotsDelay, without local multicasting. It shows clearly that more slots are
needed and blocked in this case. As the difference is large and the different branches
of the tree from the AccessNodes to the DistributorNode are at least partially in
each other’s interference range (because they end in the same node), this is enough
to conclude that the specialized scheduling strategy leads to a better schedule in
most cases.

However, it is possible to construct examples where the resulting schedules are
the same in both scheduling strategies, but even in the worst case (if no slot can
be shared by the different branches), the specialized scheduling strategy does not
produce a worse schedule. Figure [5.6| shows an example concast tree, for which all
scheduling strategies would find the same schedule, because f and e can send at the
same time anyway (under the assumption that the interference range is the 2-hop
communication range). However, in practice this should rarely be the case.

(e —b—a)

Figure 5.6: An example concast tree in which all scheduling strategies find the same
schedule.

5.6. Examining an Example Tree 71

5.6 Examining an Example Tree

For a better understanding of the route discovery and scheduling process, a step by
step example of the complete process will be shown in the following. This example
uses network topology 2 (Figure with 10 micro slots. Two mobile nodes M1
and M2 have been added to the network. Nodes 6, 9 and 16 are specified as the Ac-
cessNodes for M1 and are shown with a border in all figures. Nodes 7, 12 and
2 are specified as the AccessNodes for M2, shown with a purple border in all figures.
Sources of trees are shown in red and destinations in . The DistributorNode is
shown in .

For a better understanding, the trees are depicted with arrows pointing in the di-
rection that data is send, even though the links are undirected. Also, some links are
shown as multiple, differently colored arrows, which means that the link is part of
two different trees. The mobile nodes are each connected to one of their AccessNodes
in all figures. Of course, they can be connected to other AccessNodes at different
times. In all tables, changed reservations are colored. Reservations that did not
change since the previous step are shown in black.

Figure 5.7: The tree from the AccessNodes of M1 to the DistributorNode 6.

72 5. Evaluation

| Slot: IE 1] \ [4]5]6]7[8]9]
Node 1: X X X
Node 2: X X X X
Node 3: X X
Node 4: | x X X X
Node 5: | x X X
Node 6: RMl X X Rn 7
Node 7: | x X Rg
Node 8: X Ry X
Node 9: R]\,ﬂ X X
Nodel0: | x X X X
Nodell: |x X Ry
Nodel2: | x Rig X
Nodel3: | x X X
Nodel4: | x X X X
Nodelb: | x X X
Nodel6: RM'l X X
Nodel7: | x X X
Nodel8: | x X X X
Nodel9: | x X X
Node20: | x X X
NodeM1: X X X
NodeM2: | x X X X

Table 5.9: The schedule for the tree from the AccessNodes of M1 to the Distribu-
torNode 6.

The example starts with a time-critical tree from the mobile node M1 to the

mobile node M2. The first step is to determine the DistributorNode and find the
concast tree from the AccessNodes of M1 to the DistributorNode. The resulting tree
is shown in Figure [5.7] and the schedule in Table [5.9
Node 6 was chosen as the DistributorNode, because it has the smallest average
distance to all other nodes. As there is only one shortest path from each AccessNode
to the DistributorNode, all tree creation strategies produce the same tree.
The data will first be sent from the mobile node to the AccessNode currently in
range (slot 0), and then from the AccessNodes to the DistributorNode. For the path
from the AccessNodes to the DistributorNode, the specialized scheduling strategy
from Section was chosen. It can be seen that the transmissions from node 8
to 7 and from 12 to 11 are scheduled in the same slot (2 and 3), even though their
resp. receivers are in each others interference range (this is normally not allowed
according to Property 2), because only one of the branches of this tree will be active
at any time.

5.6. Examining an Example Tree

73

| Slot: 0 |1 |3 (6 [7 8 [9]
Node 1: X X X X X X
Node 2: X X X X X X
Node 3: X X X
Node 4: | x X X X X X
Node 5: | x X X X X X X
Node 6: Ry X X Ri17 X X X
Node 7: | x X Rs | Sg Rg X
Node 8: | x Ry | S7 | x X X
Node 9: R Ss | x X X X
NodelQ: | x X X X X X
Nodell: | x X Ry | Sg R X X X
Nodel2: X R16 SH X X R11 X
Nodel3: | x X X X X X X
Nodel4: |x X X X X X
Nodel5: | x X X X X X X
Nodel6: | Ry Sig | x X X X Ry X
Nodel7: | x X X X X X X
Nodel&: | x X X X X X
Nodel9: | x X X X
Node20: | x X X X X Rig
NodeM1: | Sg 169 | X X X X X X X X
NodeM2: | x X X X X X X X Ry 12 9

Table 5.10: The schedule for the tree from the DistributorNode to the AccessNodes

of M2.

74 5. Evaluation

The second step is to add the mobile node M2 as a destination of this trans-
mission. This is achieved by creating a new tree from the DistributorNode 6 to all
AccessNodes assigned to M2. Again, there is only one shortest path from the Dis-
tributorNode to each of the AccessNodes of M2, so all strategies produce the same
tree. As this is a time-critical tree, assignSlotsDelay will be used for the scheduling
and the scheduling starts in slot 4 (the slot after the last slot in which the Distrib-
utorNode receives from the AccessNodes of M1) to minimize the delay from M1 to
M2.

The resulting tree and schedule are shown in Figure 5.8 and Table Local mul-
ticasting is used in slot 4 from node 6 to nodes 7 and 11. The rest of the links are
all scheduled directly after their preceding link as discussed in Section [£.5.2.1] Slot
8 is reserved to send from the AccessNodes to M2 and therefore blocked in all other
nodes (as discussed in Section [4.5.3.2)).

This completes the tree from mobile node M1 to mobile node M2. The maximal
delay of a transmission from M1 to M2 is 9 micro slots. In Sections[5.4and [5.5]it was
shown how the trees and schedules involving mobiles nodes would look like without
AccessNodes or the specialized scheduling strategy for the tree from AccessNodes to
DistributorNode. It is obvious, that without these two improvements, no schedule
would be found in this example.

Figure 5.9: A stationary tree from node 18 to 10 has been added to the network.

5.6. Examining an Example Tree 75

| Slot: I& (1 [2] | | (6 [7 |8 | 9]
Node 1: X X X X X X X X
Node 2: X X X X X X X X X
Node 3: X X X X
Node 4: | x X X X X X X X X
Node 5: | x X X X X X X
Node 6: RMI X X R117 57 11 | X X X X
Node 7: | x X Rg | Sg Rs X Ris Sure
Node 8: X Ry | S; | x X X R; | x
Node 9: Ry Ss | x X X X X X X
Nodel0: | x X X X X Rg | x X X
Nodell: X X R12 56 R6 512 X X X
Nodel2: X R16 SH X X RH Sl6 X SMQ
Nodel3: | x X X X X X X
Nodel4: |x X X X X X X X X
Nodel5: | x X X X X X X
Nodel6: | Ry Sia | X X X X Ris | So | x
Nodel7: | x X X X X X X
Nodel&: | x X X X X X X X
Nodel9: | x X X X X X X
Node20: | x X X X X Rig | S
NodeM1: | Sg 169 | X X X X X X X X
NodeM2: | x X X X X X X X R7 12 20

Table 5.11: The updated scheduled after adding the tree from 18 to 10.

The example is continued by adding a stationary tree from node 18 to 10 to
the network (see Figure and Table . As there are multiple shortest paths
from 18 to 10, several algorithms for the tree creation can be used, as discussed in
Chapter [3] One option examines the degree of the nodes on the paths. Here, nodes
7 and 8 have a higher degree than the nodes on the other paths (nodes 14 and 9
resp. 19), i.e., createNewTreeDegree would choose the shown path. The path chosen
by createNewTree depends on the threshold set for the getMinNumberOfFreeSlots
function. Table [5.10| shows that link [7,8] has three free slots left, while all other
links on the possible paths have four free slots left. Therefore, if the threshold is
three or less, the path shown in the figure would be used. Otherwise, one of the
other paths would be chosen. Section explained that a threshold equal to the
length of the path is a safe option. Therefore, the path shown in in Figure 5.9
was chosen in this example.

As there are not many free slots left, assignSlotsUtil is used. The effect that
choosing assingSlotsDelay for this path has on the rest of the schedule will be ex-
amined in Section 5.6l

Links [18,7] and [7,8] are scheduled first and second, because they have less free
slots (3) than link [8,10]. For link [18,7], slot 6 is chosen because it is blocked in
more interference neighbors than slots 7 and 9 (e.g., it is blocked in node 6 which
is free in slots 7 and 9) and free in the same number of links on the route as the

76 5. Evaluation

other slots. For link [7,8], slot 7 is chosen for similar reasons. Finally, link [10,8] is
scheduled for slot 5, because it is blocked in more interference neighbors than slot 9.
This leads to a delay of 10 micro slots for this tree. The resulting tree and schedule
is shown in Figure and Table

In the last step, four destinations (5, 13, 15 and 17) are added to the first tree
(from node M1 to M2), i.e., they want to receive the transmission from M1. The
resulting tree and schedule is shown in Figure [5.10]and Table Since, the desti-
nations are added to an existing tree, local multicasting can be used. All destinations
are in one-hop distance to node 16, which is already scheduled to send to node 20
in this tree.

Therefore, the first two destinations (5 and 13) are scheduled to receive in the
slot in which node 16 sends (slot 7). Now, node 16 is transmitting to 3 other nodes,
which means, according to the assumptions (Section , that another slot has to
be chosen for the rest of the destinations. The only slot that is still free in node 16
(and the next destination 15) is slot 9, so node 16 is scheduled to send in slot 9 and
node 15 is scheduled to receive in the same slot. The next destination (17) is also
scheduled to receive in this slot (again using local multicasting).

Figure 5.10: Four new destinations (5, 13, 15, 17) have been added to the tree from
M1 to M2.

5.6. Examining an Example Tree

7

| Slot: 0 1 |2 6 8 9
Node 1: X X X X X X X X
Node 2: X X X X X X X X X
Node 3: | x X X X
Node 4: | x X X X X X X X X
Node 5: | x X X X X Rig X X
Node 6: RMI X X R117 57 11 | X X X X
Node 7: | x X Ry | Se Re X Rig | S Sh2
Node 8: | x Ry | S; | x X S0 | x R, X
Node 9: Ry Ss | x X X X X X X
Nodel0: | x X X X X Rg | x X X
Nodell: |x X Ris | Sg R Sz | x X X X
Nodel2: X R16 SH X X RH 516 X SMQ X
Nodel3: | x X X X X Rig X X
Nodeld: | x X X X X X X X X
Nodeld: | x X X X X X X Rig
Nodel6: | Ryn Sia | X X X X Ris X
Nodel7: | x X X X X X X Rig
Nodel8: | x X X X X X S7 | x X
Nodel9: | x X X X X X X
Node20: | x X X X X R Sh2 X
NodeM1: | Sg 169 | X X X X X X X X X
NodeM2: | x X X X X X X X R; 1290 | x

Table 5.12: The updated schedule after adding the new destinations to the tree from

M1 to M2.

78 5. Evaluation

A Slight Variation of this Example

| Slot: I& 1] | (4] (6 |7 8 E
Node 1: X X X X X X X X
Node 2: X X X X X X X X X
Node 3: | x X X X
Node 4: | x X X X X X X X X
Node 5: | x X X X X R X X
Node 6: R]y[l X X R117 S7 11 | X X X X X
Node 7: | x X Rg | Sg Rg X Rig S X
Node 8: X Ry | S; | x X X R~ X
Node 9: Ry Ss | x X X X X X X
Nodel0: | x X X X X X X X Ry
Nodell: |x X Ris | Sg R Si2 | x X X X
Nodel2: X R16 SH X X R11 516 X SA[Q X
Nodel3: | x X X X X R X X
Nodel4: | x X X X X X X X X
Nodeld: | x X X X X X X Rig
Nodel6: R]Ml Slg X X X X R12 SQO 513 | X 515 17
Nodel7: | x X X X X X X Rig
Nodel8: | x X X X X X X X
Nodel9: | x X X X X X X
Node20: | x X X X X Rig S X
NodeM1: | Sg 169 | x X X X X X X X
NodeM2: | x X X X X X X X R7 12 20

Table 5.13: The schedule for the same network when the tree from 18 to 10 was
scheduled with assignSlotsDelay.

In the previous example, a new tree from 18 to 10 was scheduled with the assingSlot-
sUtil function. To show the difference between the scheduling strategies, the same
example is now examined with the tree from 18 to 10 scheduled with assignSlotsDe-
lay. The resulting schedule is shown in Table The first two links of the tree
(|18,7] and [7,8]) are scheduled in the same slots as in the previous example, but the
last link from 8 to 10 is scheduled for slot 9 in this case. This leads to a decreased
delay for this tree (from 10 microslots to 4 microslots). Therefore, if no other routes
have to be added, this schedule is better. However, the previous example has more
free slots left. For example, as seen in Table [5.12] it would be possible to add a new
tree from node 1 to node 6 in slot 9, or add node 6 to the tree from node 18 to 10
(also slot 9). In the modified example (Table [5.13)), node 6 is blocked in all slots,
therefore these possibilities no longer exist. This shows the differences between the
scheduling strategies and the reason why assignSlotsUtil generally finds a feasible
schedule in more scenarios, as shown in Section 5.3

Chapter 6

Conclusion and Future Work

In this thesis, a routing algorithm for the scenario described in Chapters [I]and 2] was
developed. The original scenario is a clustered, TDMA-based network containing
a topology of stationary nodes and a few mobile nodes. The algorithm is able to
discover routes between different types of nodes and creates a conflict-free time slot
schedule. Several different functions for the route discovery and scheduling phase
were developed and discussed. To increase the number of application scenarios in
which the algorithm can be used, the possibility to either minimize the delay or
maximize the chance of finding a route for the current and future route requests is
given.

The requirement to find routes from one source to multiple destinations is sat-
isfied. Multicast trees are created in the route discovery phase to avoid redundant
transmissions and local multicasting is used in the scheduling algorithms to save
bandwidth and further reduce the delay.

The algorithm can handle mobile nodes as source and destinations of trees and
offers a specialized scheduling strategy to find an efficient schedule without wasted
time slots if the mobile node acts as source of a tree. To include mobile nodes a
new node type has been introduced. Stationary AccessNodes have to be specified
by the user and ideas to determine suitable AccessNodes were given. In the given
application context, with its fixed stationary topology, this is not a problem and
only requires a bit of additional work.

The algorithm works on a relatively realistic network model, with the interference
range of nodes taken into account. Possible packet loss is handled by an acknowl-
edgement mechanism. Other requirements, such as the synchronization and global
knowledge of the stationary network can be fulfilled by previous work [13] [18§].

The routing and scheduling of management traffic was also discussed and a solu-
tion was presented.

In the original scenario, the network was clustered and had several different clus-
tering and functional node types. The algorithm works without problems for this
network type, even though the clustering and functional node types are not necessary
for the algorithm.

As a proof of concept, the route discovery and scheduling phase of the algorithm
were simulated and the simulation confirmed the effectiveness of the created routes
and schedules. An actual implementation of the algorithm on wireless nodes was

80 6. Conclusion and Future Work

not part of the thesis.

For future work, several possible optimizations for the algorithm were discussed
in the main part of this thesis. For example, in Section it was discussed how the
current route confirm phase can be optimized for energy constrained networks.

In addition to these, several possibilities to further improve the algorithm exist.

Currently, the algorithm is designed to fulfill route requests with one micro slot
per link and super slot. Due to the configurable length of the micro slots, this is
enough for many scenarios. The length can be adjusted, so that all packets and their
acknowledgements fit into a single slot. A generalization of the algorithm, so that a
variable number of slots can be reserved, would be an improvement and should be
possible without changing the basic principles.

A variable number of slot reservations would also allow the inclusion of multi-
pathing, i.e., splitting data into parts and sending them along different paths. In
some network topologies, this can lead to an improvement in throughput and in-
crease the chance of finding a feasible route in bandwidth constrained networks.
However, research suggests that multipathing generally does not lead to a signif-
icant improvement in end-to-end delay and network capacity in general networks
[23].

Currently, the algorithm selects a single route and schedule for a route request
according to the criteria of the used functions. A possibility to further increase the
success rate of the scheduling could be the use of alternative paths and schedules.
So, instead of selecting a single route / schedule, several alternatives could be saved.
If at some point no route or schedule for a new request is found, this would also allow
to try different combinations of solutions for previous requests, in order to fulfill the
current request. An additional challenge of such an approach is to decide which
and how many alternatives should be tried, before the current request is deemed
impossible to fulfill.

A similar, but simpler, idea would be to redo the route discovery and scheduling
process at specified points of time, for example, after the number of available slots
is reduced below some threshold. The routes and schedules currently depend on
the order in which they were created. E.g., if a destination is added to an earlier
tree, after several other trees were created, the resulting schedule may not be very
efficient. So, in that case redoing the whole process in a different order (e.g finishing
the route discovery and scheduling for one tree, before creating a new tree), could
improve the result.

Bibliography

[1]
2]
3]
4]

[5]

6]

|7l

18]

19]

[10]

[11]

[12]

[13]

igraph R package. http://igraph.org/r/. Accessed: 15.03.2015.
Latex. http://www.latex-project.org. Accessed: 15.03.2015.
R. http://www.r-project.org/. Accessed: 15.03.2015.

Jamal N Al-Karaki and Ahmed E Kamal. Routing techniques in wireless sensor
networks: a survey. Wireless communications, IEEE, 11(6):6-28, 2004.

Shigang Chen and Klara Nahrstedt. Distributed quality-of-service routing in ad
hoc networks. IEEE Journal on Selected Areas in Communications, 17(8):1488—
1505, 1999.

Shigang Chen, Klara Nahrstedt, and Yuval Shavitt. A qos-aware multicast
routing protocol. In INFOCOM, pages 1594-1603, 2000.

Yuh-Shyan Chen, Tzung-Shi Chen, and Ching-Jang Huang. Som: Spiral-fat-
tree-based on-demand multicast protocol in a wireless ad-hoc network. In
ICOIN, pages 17-24, 2001.

Yuh-Shyan Chen, Yun-Wen Ko, and Ting-Lung Lin. A lantern-tree-based qos
multicast protocol for wireless ad-hoc networks. In Ronald P. Luijten, Eric
Wong, Kia Makki, and E. K. Park, editors, ICCCN, pages 242-247. IEEE,
2002.

Yuh-Shyan Chen, Tsung-Hung Lin, and Yun-Wei Lin. A hexagonal-tree tdma-
based qos multicasting protocol for wireless mobile ad hoc networks. Telecom-
munication Systems, 35(1-2):1-20, 2007.

Imrich Chlamtac, Marco Conti, and Jennifer J-N Liu. Mobile ad hoc network-
ing: imperatives and challenges. Ad hoc networks, 1(1):13-64, 2003.

J. J. Garcia-Luna-Aceves and Ewerton L. Madruga. The core-assisted mesh
protocol. IEEE Journal on Selected Areas in Communications, 17(8):1380-
1394, 1999.

Johann Gebhardt. TDMA-based Multicast-QoS-Routing-Approaches for Mo-
bile Ad Hoc Networks. Seminar thesis, TU Kaiserslautern, 2014.

Reinhard Gotzhein and Thomas Kuhn. Decentralized tick synchronization for

multi-hop medium slotting in wireless ad hoc networks using black bursts. In
SECON, pages 422-431. IEEE, 2008.

http://igraph.org/r/
http://www.latex-project.org
http://www.r-project.org/

82

Bibliography

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

25]

[26]

[27]

Anuschka Igel and Reinhard Gotzhein. An analysis of the interference prob-
lem in wireless tdma networks. In ICWMC 2012, The Eighth International
Conference on Wireless and Mobile Communications, pages 187-194, 2012.

Kamal Jain, Jitendra Padhye, Venkata N Padmanabhan, and Lili Qiu. Impact
of interference on multi-hop wireless network performance. Wireless networks,

11(4):471-487, 2005.

Xiaohua Jia. A distributed algorithm of delay-bounded multicast routing for
multimedia applications in wide area networks. IEEE/ACM Transactions on
Networking (TON), 6(6):828-837, 1998.

David Kotz, Calvin Newport, and Chip Elliott. The mistaken axioms of wireless-
network research. Technical Report TR2003-467, Dartmouth Computer Sci-
ence, July 2003.

Christopher Kramer. Ermittlung des Netzzustands von Funk-Netzwerken. Tech-
nical report, TU Kaiserslautern, 2013.

Christopher Kramer. Drahtlose Kommunikationssysteme fiir den Produktions-
bereich. Master’s thesis, TU Kaiserslautern, 2014.

Baochun Li. Qos-aware adaptive services in mobile ad-hoc networks. In Quality
of Service - IWQoS 2001, pages 251-265. Springer, 2001.

Chunhung Richard Lin. On-demand qos routing in multihop mobile networks.
In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEFE, volume 3, pages 1735-1744.
IEEE, 2001.

Chunhung Richard Lin and Jain-Shing Liu. Qos routing in ad hoc wireless
networks. IEEFE J.Sel. A. Commun., 17(8):1426-1438, September 2006.

Mattias Nissler and Reinhard Gotzhein. Performance evaluation of multi-path
routing in reservation-based wireless networks. In Proceedings of the 12th ACM
international conference on Modeling, analysis and simulation of wireless and
mobile systems, pages 268-273. ACM, 2009.

S Ramanathan and Martha Steenstrup. A survey of routing techniques for
mobile communications networks. Mobile Networks and Applications, 1(2):89-
104, 1996.

E. Royer and C. Perkins. Multicast Ad hoc On- Demand Distance Vector
(MAODV) Routing, 2000.

Jochen Schiller. Mobile Communications. Addison-Wesley, Boston, second edi-
tion, May 2003.

Jian Shen, Wenying Zheng, Jin Wang, Zhihua Xia, and Zhangjie Fu. Routing
protocols using directional antennas in ad hoc networks: A comparative review.
International Journal of Grid & Distributed Computing, 6(5), 2013.

Bibliography 83

[28] Kuei-Ping Shih, Chih-Yung Chang, Yen-Da Chen, and Tsung-Han Chuang.
Dynamic bandwidth allocation for qos routing on tdma-based mobile ad hoc
networks. Computer Communications, 29(9):1316 — 1329, 2006. {ICON} 2004
12th {IEEE} International Conference on Network 2004.

[29] Kannan Srinivasan and Philip Levis. Rssi is under appreciated. In In Proceed-
ings of the Third Workshop on Embedded Networked Sensors (EmNets, 2006.

[30] Jian Tang, Guoliang Xue, and Christopher Chandler. Interference-aware rout-
ing and bandwidth allocation for qos provisioning in multihop wireless networks.
Wireless Communications and Mobile Computing, 5(8):933-943, 2005.

[31] Xu Zhen and Zhou Long. Bandwidth constrained multicast routing for tdma-
based mobile ad hoc networks. Journal of Communications Systems, 8(3):161—
167, 2013.

	Abstract
	Zusammenfassung
	Introduction
	Problem Statement
	Network Model
	Time Division Multiple Access
	Interference-free Communication
	Interference and Acknowledgements
	Timeslot Assignment for Routes

	Quality of Service
	Node Types and Network Topology
	Stationary Nodes
	Mobile Nodes

	Related Work
	Objective of this Thesis
	Sub Objectives

	Centralized Multicast Routing
	Assessment criteria for the Route Discovery
	Number of Hops
	Length of Paths
	Cost

	Common Functions
	Route Request Phase
	Packet Types
	Protocol

	Route Confirm Phase
	Route Discovery
	Creating a New Stationary Multicast Tree
	Adding Destinations to Existing Trees
	Creating a Mobile Multicast tree
	Route Discovery with a Mobile Node as Destination
	Route Discovery with a Mobile Node as Source

	Centralized Timeslot Assignments
	Slot Types
	Local Multicast
	Mobile Nodes
	Assessment Criteria for the Schedule
	Timeslot Assignments for Trees
	Definitions
	Scheduling Algorithm – Creating a New Tree
	Minimizing the Delay
	Maximizing the Utilization

	Scheduling Algorithm – Additions
	Adding a Destination to a Tree
	Scheduling Including Mobile Nodes
	Scheduling Multiple Trees

	Evaluation
	Evaluation Setup
	Evaluation Scenarios
	General Performance
	Delay and Utilization
	Lowering the Number of Micro Slots
	Scheduling Multiple Trees

	Mobile Nodes as Destination
	Mobile Nodes as Source of a Tree
	Examining an Example Tree

	Conclusion and Future Work

